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Section 1:  General Principles

The purposes of science include describing and explaining “natural phenomena,” which include all objects
and processes in the observable, physical universe. To do this we observe the objects and processes, draw
inferences from our observations, make predictions about natural phenomena based on our inferences,
generate hypotheses based on our predictions, and perform additional observations or experiments to test
our hypotheses. Our inferences may be supported by additional information, or they may be refuted. Over
time a conceptual framework builds up that explains a range of related phenomena, and that makes
predictions about phenomena that have not yet been observed.

Organisms and their characteristics are natural phenomena that we can try to understand through the
process of science. A characteristic of an organism that can be observed or measured, and that differs from
one individual to the next in an observable fashion, is a variable. There are innumerable types of
observations that we may make or variables we can measure in the science of biology. One general type is
qualitative observations; the characteristics that we make qualitative observations on are called qualitative
variables or attributes. These variables are mutually exclusive, non-overlapping states of physiological,
morphological, behavioral, or ecological categories. For instance, the distinction between male and female is
a qualitative one, as is the difference between larva and adult. Another general type of variable in biology is
the ranked variable, in which states or conditions (or for us behaviors) are assigned ranks in a series. The
ranks do not imply an step-wise or incremental progression of intensity from one state to the next, but
allow us to recognize discrete categories or conditions.

Qualitative and ranked variables do not “measure” things in the traditional sense. Measurement variables
are called quantitative variables. There are two types of quantitative variables. For discrete, meristic, or
discontinuous quantitative variables, observations can take on only whole number values; these are counts
of things. Number of individuals in a group, number of ectoparasites on an individual animal, and number
of eggs laid by a female are examples of discrete quantitative variables.

Continuous quantitative variables can theoretically take on any value between two fixed points. The
accuracy of the measurement of the variable depends on the sensitivity of the measuring device. Here the
true value of the variable cannot be known with certainty, but can only be estimated. There are obviously
many examples of continuous quantitative variables in biology. Anything to do with body size or size of
structures, mass of organisms or pieces of organisms, longevity of organisms, preferred activity
temperature, etc. would be included in this category.
                   
In biology, our explanations of natural phenomena often make reference to similarities and differences
between various categories. For instance, we might want to understand the effect of several pesticides on
two species of insect, one harmful and one beneficial. Which pesticide would be the most effective in
controlling the population of the harmful insect, and which would be the least detrimental to the beneficial
insect? To answer our question we would need to compare not only the effect of the various pesticides on
each of the two species, but we would also need to compare the two species' resistance or susceptibility to
the pesticides. We might expect that pesticide A is more effective than pesticides B, C, or D, and that insect
species A is more resistant to all of the pesticides than is species B.

Biology is also a science in which absolute answers to our questions are uncommon. This is because of the
variation (genotypic and phenotypic) that is inherent in all biological systems. Individual members of a
species differ from one another in obvious and subtle ways, as a result of both environmental and genetic
factors. Absolute answers to our questions are also uncommon because in general it is impossible to make
all possible measurements on a particular variable. In the example above, it might be theoretically possible
to test the effects of each pesticide on every individual of species A that is presently alive. The set of all
possible observations that could be made on a particular phenomenon is called a “statistical population.”
In general it is impossible to work with a statistical population because of practical constraints on time,
energy, and money [exceptions might be the wing length of all alala (Hawaiian Crow) or the body mass of



all Jabiru Storks]. Thus it is inherently impossible to know with absolute certainty the value of all possible
observations that could be made on a particular phenomenon. This is where statistics comes in.

One purpose of statistics is to make a guess at the true value of a set of potential observations (a statistical
population), based on a subset of those observations. The true value of a set of observations, which is
practically “unknowable” for the reasons discussed above, is called a “population parameter.” We cannot
measure the effects of pesticide A on every individual of species A, but we certainly could measure the
effect (for instance on longevity after exposure) of pesticide A on a single individual of species A. What
would such a measurement tell us? Would it tell us the value of longevity for every possible similar
measurement? Obviously not, because each individual of species A might be more or less susceptible than
other individuals. We should measure the effect of the pesticide on several individuals of species A to get a
reasonable estimate of the longevity after exposure for the population. In other words, we would take a
sample of a statistical population, and use the sample to estimate the true or parametric value of the variable
we are interested in (e.g. average longevity after exposure). The number of observations that we take is
referred to as the sample size, and the estimate of the population parametric value is the “sample
statistic.” The average longevity of a sample of individuals of species A after exposure to pesticide A
would be an estimate of the parametric value of that average if we could measure the longevity of every
individual of species A.

Once we have sampled from the statistical population, we will have a set of longevity values. However, not
all individuals that we measure will have the same response to our treatment; some will live longer than
others. There will be some inherent variation between individual measurements within our sample. We
might want to know how variable our set of observations is, so that we know what to expect if we are going
to use the pesticide to try to kill individuals of species A. We might also want to know about variability if
we want to compare the mean longevity of species A with that of species B.

There are two basic quantities in “parametric” statistics. The mean (I am going to use the symbol Ÿ for
the mean) is a measure of “central tendency,” which is calculated by summing all of the observations and
dividing this sum by the number of observations [Ÿ = SY/n, where Y is any particular observation, SY is the
sum of the observations (S means “sum”), and n is the number of observations or sample size]. The
variance is a measure of dispersion, or of the average difference between individual observations and the
mean. It gives us an idea about how “spread out” or variable our observations are. The variance is
calculated in two steps. First, we find the “sum of squares.” We find the difference between each
observation and the mean, square this difference, and then sum over all of the observations. The sum of
squares is symbolized Sy2.  In theory, Sy2 = S(Y - Ÿ)2, but in practice, it is easier to compute it as Sy2 =
SY2 - (SY)2/n  (these two equations are mathematically equivalent). In this equation, SY2 is the sum of the
squared value of each observation, and (SY)2 is the sum of all of the observations, quantity squared.
Modern pocket calculators will compute both SY and SY2 in the same operation (some will even calculate
the mean and variance automatically). Once the sum of squares has been calculated, the variance is simply
the sum of squares divided by the degrees of freedom, n-1. Symbolically,

           

The square root of the variance is a quantity called the standard deviation. This quantity is often reported in
publications. It has the advantage of being easier to interpret than the variance, because its value is usually
of the same order of magnitude as the mean. The standard deviation is another measure of dispersion. In
any set of normally distributed, continuous quantitative data, approximately 68% of the observations lie
within one standard deviation of the mean, and approximately 95% lie within two standard deviations of the
mean.

Another purpose of statistics, indeed, for our purposes the most important one, is to make decisions about
whether two or more samples could have come from the same statistical population. Without knowledge of
the parametric mean of a population, we use sample means to estimate the parametric mean. We are often
faced with the question “are these means different?” There are a variety of ways of answering that

s2 = ∑y2/n-1 = ∑Y2 - (∑Y)2/n
                                 n-1



question, depending on the nature of the data and on the number of means we want to compare. In statistics,
we test a “null hypothesis” which is that two means are equivalent in value. The alternative hypothesis is
that the means are unequal. Statistical tests are used to test the null hypothesis, and the result of the test
allows us to either accept the null hypothesis (the means are equal) or reject the null hypothesis (the means
are different). Because we are only estimating the values of the means (they are based on samples and not
populations) there is the potential that our decision about the equality of the means is incorrect. If we reject
the null hypothesis and decide that our means are not equal, it might be possible that  if we took a larger
sample, the value of the means would change, and they could in fact have been taken from the same
statistical population. Alternatively, if we accept the null hypothesis and say that the means are the same,
they might actually be different, but our sample sizes are insufficient to detect that difference. Statistics is a
tool that allows us to make decisions in the face of uncertainty, but those decisions still carry a risk of being
incorrect.

There are a variety of ways that we can minimize those risks. In general, a larger sample will result in a
smaller variance, which will allow us to have greater confidence in our decision about either acceptance or
rejection of a null hypothesis. Statisticians agree that a sample size of 30 for each mean is a minimum for
parametric methods to apply with confidence. This is because most parametric statistical tests assume that
the data to which they are applied are normally distributed (a “normal distribution” is the familiar bell-
shaped curve). With smaller sample sizes, data sets may be badly skewed and not approach very closely a
normal distribution.

Many novice students of statistics get confused by the meaning of the result of a statistical test. The most
common type of result is a P (for “probability”) value which theoretically ranges from 0 to 1, but which in
statistical practice approaches but does not reach 0 or 1. We say this because statistics is the business of
making guesses in the face of uncertainty, and probabilities of 0 and 1 imply statistical certainty (something
never happens or something always happens). In biology, we almost never deal with certainties. What the P
value tells us is the probability (based on our test) that two (or more) means are statistically equivalent. By
convention, we reject the null hypothesis that two means are equal only if the probability that they are the
same is less than 0.05 (5%). If a statistical test results in a P value of 0.05 or less, we say that the
difference between our means is “statistically significant.” This should all make more sense after a
little practice.

What follows is a set of descriptions of several common statistical tests that we will use in this course, and
a description of the proper way to present results of statistical tests. The following summary is designed to
expedite your use of the full descriptions.

Summary of statistical tests used commonly in animal behavior studies

t-test: Used to compare the value of two means. A special case of ANOVA, and can be used with equal or
unequal sample sizes. Means and their associated variances must be calculated to use the t-test. We will use
this test often, because many of our lab exercises make simple quantitative comparisons of two sets of data.

ANOVA (analysis of variance): Used to compare the value of three or more means. One need not calculate
either means or variances in order to use ANOVA, as the important values come out of the computations
automatically. This is a powerful statistical method, and drives much of the design of experiments. We will
barely scratch the surface of the complexity of analysis of variance.

correlation: Used to determine to what extent two variables vary together. An increase in the value of one
variable may be associated with an increase in the value of the other variable (a positive correlation);
alternatively, and increase in the value of one variable may be associated with a decrease in the value of the
other variable (a negative correlation). We will use this technique occasionally, for instance to compare
body masses of worker ants with the mass of the cargo they carry.

regression: Used to determine to what extent an experimentally manipulated independent variable
determines the value of an unmanipulated dependent variable. This is appropriate for experimental
situations, while correlation is more appropriate for observational data.

analysis of frequencies: Used to detect similarities or differences in the frequency of occurrence of
events; to detect patterns in such occurrences. Familiar tests such as chi square, which we will use
occasionally, fall into this category.



Section 2:  Specific statistical tests:

At this point, you probably have enough information to begin learning some actual statistical techniques.
There are really only four or five commonly used statistical tests in animal behavior, and these are not really
excruciatingly complicated. In fact, you do not have to remember how to actually calculate any of these
statistics, because you have the luxury of a computer software package called Minitab that will run these
tests (and many more) for you. The reason for going through the rigmarole below is because you will have
a greater understanding of the meaning of the results of the tests if you know where they come from. The
tests described below are the t-test, analysis of variance, correlation, and chi-square.

The t-test is used to compare the values of two sample means. It is necessary to compute variances as well
as means to calculate t. This is a very commonly used statistic. The initial analysis involves the calculation
of two quantities for each set of observations: the mean and the variance. These two quantities are used in
the "t-test", which is a test for the difference between two means. When sample sizes are unequal, t  is
calculated as:

where Ÿ 1 and Ÿ2 are the two means whose difference we wish to test, n1 and  n2 are the sample sizes of Ÿ1
and Ÿ2, and s21 and s22 are the variances associated with Ÿ1 and Ÿ2. Our calculated value of t is compared
with values in tables available in any statistics text. Each tabulated value of t is associated with a probability
value, P. These probabilities tell us how likely it is that our two means were sampled from the
same statistical population. In essence, what the t-test does is to express the difference between two
means as a function of their variances. As the difference in two means becomes larger, or as the variances
become smaller, t increases. Larger t values are associated with smaller probabilities. The smaller the
probability, the more confident we are that our means are truly different. The “degrees of freedom” listed
in the table is a value based on the sample sizes of the means and variances. In general, n = n - 1; more
complicated formulae are used when the sample sizes are unequal.

We will not calculate Ÿ, s2, or t by hand, but it is good to know where these values come from. We will use
Minitab to compute these values and to perform the t-test. When reporting the results of a t-test, one
presents the means, associated standard deviations or variances, sample sizes or degrees of freedom, the
value of t, and the value of P. See below for an example.

Analysis of variance (ANOVA) is used to compare values of three or more means. This technique tells
us whether means in a series are different from one another, but does not necessarily tell which means are
different from which others. There are more involved procedures to assess this.

Analysis of variance can be used with observational data (as we will do with our ant body masses) or with
experimental data (for instance comparing the means of observations from treatment and control groups).
Analysis of variance is a very powerful statistical tool that drives the design of experiments as well as the
analysis of data.

The results of ANOVA are often reported as an “ANOVA table,” with Fs and P being the most pertinent
values. The means themselves do not automatically come out of the ANOVA computations, but these are
typically reported as well (along with sample sizes and variances or standard deviations).
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Correlation is used to assess the degree to which two variables change with respect to one another; how
do the observations in two data sets vary together? This procedure is used for data sets in which we have
neither controlled nor manipulated either of the variables. We might collect data on body size of female
fruit flies and on the body size of the males that succeed in mating with them. If larger female fruit flies
mate with larger male fruit flies, the variables "female body size" and "male body size" change in the same
way, and would be "positively correlated". In contrast, if we collect data on mating frequency of individual
male fruit flies and on population size or population density of males fruit flies, we might find that as
population size increases, mating frequency decreases. In this case, there would be a negative correlation
between population density and mating frequency. Correlation is generally used for observational data
rather than experimental data. Regression (see below) is more appropriate for experimental data in which
one variable is controlled or manipulated by the observer.

The "correlation coefficient" is a single value that describes the degree to which two variables vary together.
It ranges from a value of +1 (which means perfect positive correlation) to -1 (perfect negative correlation).
Values near zero indicate that two variables do not affect one another.  The value of the correlation
coefficient is compared with a set of tabulated values for different degrees of freedom. Usually such a table
only includes the "critical values" of r associated with P values of 0.05 and 0.01. Thus we can determine
whether our value of r indicates that there is a significant positive or negative correlation between our two
sets of observations. In correlation, one reports r, N, and P.

Analysis of frequencies: The tests described above are what we call "parametric" statistical tests and are
generally used with continuous quantitative data. However, not all quantitative data are continuous; some are
meristic or discontinuous. If you have had a genetics course, you counted fruit flies (probably until your
eyes were bugging out) to detect the frequencies of various mutant forms produced by different types of
crosses. To determine whether patterns exist in this type of data, we need a tool to detect differences in
frequencies of events or observations. Chi-square is one of those tools; it is used to assess whether a
particular set of observations conforms to an externally generated set of expected values.

The computation of Chi-square (symbolized c2) is quite simple. We expect a certain frequency of
observations to fall into each of our categories, and we have a certain number of actual observations in each
category. Chi-square is computed as:

c2  = S (f
o
 - fe)2

      fe

where f
o is the frequency of actual observations in each category, and fe is the frequency of observations

that we expect in each category. Chi-square is the sum over all categories of "observed minus expected
squared over expected". The value of chi-square increases with increasing difference between observed and
expected values, and the associated values of P decrease with increasing c2. Thus the difference between
categories becomes more significant with increasing value of c2.

One of the common uses of Chi-square is to assess whether the observed sex ratio of a population is male-
biased or female-biased.  For instance, censuses of a population of the cottonwood borer (a large and
spectacular beetle) resulted in 230 sightings of males and 359 females. With a total of 592 individuals we
would expect there to be 296 males and 296 females (this is our externally generated expectation). We
calculate chi-square as (230 - 296)2/296 + (359 - 296)2/296 = 28.125.  This value of c2 is associated with
a probability value of less than 0.001, which means there is a very small chance that our sample comes from
a population with equal numbers of males and females.



Section 3: Presenting and interpreting results:

The result of each of the tests described above is a value of the test statistic and a probability value. The test
statistic is a value that is compared with a set of values (generally in a table) that are associated with specific
probability values. The probability values (often from 0.9 in increments to 0.001) refer to the probability
that the two means (or other statistics) you are interested in come from the same statistical population. In
other words, a probability value of 0.25 means that there is a 25% chance that your two sample means are
equal. Would we be comfortable rejecting the null hypothesis that two such means were sampled from the
same statistical population? Statisticians feel that such a high probability of making an erroneous decision
is unacceptable. By convention, we require a probability value of 0.05 (the two means have a 5% chance of
being equal) before we are willing to accept the decision that they are different. This probability is referred
to as the statistical "significance" level, and we say that two means are "statistically significantly different"
only if the probability that they are equal is 5% or less.

When reporting the results of a statistical analysis, the standard procedure is to report the values of the
means, the associated variances (or standard deviations) and sample sizes (or degrees of freedom), the value
of the test statistic, and the probability (P) value. This information allows your readers to evaluate the
statistic for themselves, to check the validity of your result. Believe me, reviewers, editors, and instructors do
check!

Some kinds of results are best reported in text rather than in a table or figure. For results such as the sex
ratio values described above, you would simply write a sentence presenting the numbers, the sex ratio, the
chi-square value, and the P value:

"We counted 592 beetles (230 males and 359 females). The population sex ratio was 0.65, which is
significantly different from unity (c2 = 28.1, P < 0.001)".

For relatively simple cases of two means compared with a t test, results may be most simply reported in
text. For example, in a study of territorial behavior in a damselfly, one could compare mean perch times of
individual males who leave their perches spontaneously versus those that are disturbed by conspecific
males. In presenting the results you would simply say “Mean perch time did not differ significantly
between males who left their perches spontaneously and those that were disturbed by conspecifics
(spontaneous mean = 118.6 sec, N = 37, s = 15.6; disturbed mean = 111.4 sec, N = 42, s = 19.5; t = 1.81,
P = 0.074).”

More complex or extensive results are often reported in a table. For instance, if you wanted to report several
pairs of means and associated variances, along with results of t-tests comparing the means, a table would be
appropriate. Data on sexual size dimorphism in the cottonwood borer might be presented in a table like
this:

Comparison of elytron length (EL) and body mass (BM) of males and females of Plectrodera scalator.
aMean + SD; b (sample size)

________________________________________________________________________
males females ts P

________________________________________________________________________

1991 EL(mm) 22.49 +2.21a 25.76 +1.31 17.98   <0.001
(190)b (203)

1992 EL(mm) 22.01 +1.16 24.91 +1.42     22.44    <0.001
(205) (197)

1992 BM(g) 1.44 +0.21 2.19 +0.89 7.26   <0.001
(123) (127)

________________________________________________________________________



The layout of a table is variable, and sometimes dictated by personal preferences of the author (or editor),
but in general it is good to have the means that are being compared (with associated variances and sample
sizes) arranged so that they are read across the table rather than up and down, and so that the sample
statistics and probability values are placed in the same row as the means. Some editors use asterisks to
denote P values, with one asterisk being P < 0.05, two asterisks meaning P < 0.01, and three meaning P <
0.001. The sample statistics are not always reported (due to space considerations), but the means, variances,
and sample sizes must be so that the reader can reconstruct the statistical test.

When presenting results such as these in a table, the tendency of inexperienced scientific writers is to begin
a paragraph about the results with a statement like "The data are summarized in Table 1."  DO NOT DO
THIS!  Always describe (clearly and forcefully) in writing the important results, and refer the reader to the
table. For instance, when I describe these data, I would (and did) write "Females were significantly larger
than males, both in elytron length and in body mass (Table 1)."

Some types of results are best presented graphically. Histograms and line graphs are the most common in
the animal behavior literature. A histogram is most appropriate when the data set is a series of means from
categories (such as different species) rather than a series of means from treatment groups (such as activity
levels at different temperatures). Line graphs are more appropriate for the latter.

A histogram typically consists of the set of categories along the abscissa and values of means or of
frequencies along the ordinate. For instance, if we wanted to visualize the average distance between foraging
individuals of several shorebirds, we might line up the species along the abscissa, and put the distance (in
meters) on the ordinate. Such a histogram would allow the reader to see both the differences (or
similarities) between species and the extent of those differences. It is also customary in histograms to
include "error bars" at the tops of the columns that indicate the variances of the means, and to include the
sample sizes along the abscissa or within the columns. A fairly recent trend in some publications (although
not usually original scientific ones) is to use fancy graphic programs that generate histograms that look
three-dimensional. This is unnecessary and is in fact misleading, because it implies that there is a third
variable presented in the graph (thickness in addition to height and width of the bars), which is not actually
present.

In a line graph, we usually place the treatment groups (or values of the independent variable) along the
abscissa (for instance temperatures) and the values of the dependent variable along the ordinate. Running
velocity of foraging seed harvester ants could be measured at 10oC, 15oC, 20oC, 25oC, and 30oC. These
would be our treatments or independent variables, and mean running velocities would be plotted in the body
of the graph. Error bars are often placed with the means in this type of graph as well. Sample sizes may be
reported in the figure caption or placed in the body of the graph if there is room.

If we were to collect data on running velocity of several ant species at our various temperature values, we
could place all means on the same graph, using different symbols (circles, squares, triangles, etc.) for the
different species. Such a graph allows the reader to easily compare our data sets. For complex data sets,
graphs are often very "busy". Be careful not to try to present too much information in a single figure.
Include data that need to be compared, but separate different data sets into their own figures. With practice,
authors can strike an appropriate balance of results in text, in tables, and in figures.


