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Introduction

The talk begins by examining a strange feature of non-relativistic
quantum mechanics, which has been identified as a residue of
relativity.

Pursuing this oddity, we find that it is present already in classical
physics, and, using variational formulations of mechanics and
analogies between optics and mechanics, can even form the starting
point for constructing essential elements of special relativity and,
invoking the equivalence principle, of general relativity as well.

This provides new observations on the relation between classical
and modern physics, and the constraints that classical physics
places on its successor theories, both by demanding that insights of
classical physics are preserved, and that different domains of
classical physics are combined in overarching theoretical
frameworks.
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Pauli's phase

When Galilei transforming the Schrodinger equation

W08 2
ot  2m Ox2
the coordinate transformation

X — X/:X—Vt

t - t'=t
and thus
wl(le t/) _ @ZJ(X/ + Vt/, tl)

is not sufficient.
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Pauli's phase

Rather one needs an additional phase transformation, apparently
first introduced in Pauli's 1933 Handbuch article “Die Allgemeinen
Prinzipien der Wellenmechanik."”

w/(X/’ t/) _ w(xl + Vt/, tl)e—i‘(mvx’—i-%vzt/)
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Deriving Pauli’s phase

m Start from (coordinate) transformed Schrédinger equation

O = 0Oy
O = Oy — vy

Find phase transformation of wave function that conserves
form of Schrodinger equation (e.g., Greenberger, 1978).

m Start from (plane wave) solution of untransformed
Schrodinger equation, i.e.,

W(x, t) = e~ 7 (E(P)t—px)

Insert new coordinates, and find additional phase
transformation needed to give correct expectation values of
energy and momentum (E’ = E — pv + mv?/2;

p' = p — mv)in the new reference frame (Pauli).
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Origin of Pauli's Phase

When it's not entirely trivialized, the origin of this phase is seen as
a relativistic remnant. If one considers the Schrodinger equation as
the non-relativistic limit of a Klein Gordon equation, one has to
add a constant term mc? to the Hamiltonian. For the wave
function this means an additional factor of e %™t - which has no
effect (shift of energy by constant).

But when considering the Galilei transform as an approximated
Lorentz transform, we have neglected the first correction to the

time.
t— %x v 1v2
t ot = —C~t— —Sx+-—t
V2 c? 2 c?
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Origin of Pauli's Phase

Plugging the usually negligible time transformation

t—t t- ax t— +1V2t
— = — "l — —5X -y
2 c? 2 ¢c?

c2

: _ime2
into the usually redundant phase factor e #™<"f we get an
additional factor in the transformed wave function.

e—%mczt’ef%(mvx’+%v2t’)
...the redundant relativistic phase times Pauli's phase—and all

terms of order 1/c? cancel. Greenberger (1979) called (a
generalization of) this phase a residue of relativity.
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Origin of Pauli's Phase

One can also argue the other way around: In order to eliminate
Pauli's phase, one needs to introduce elements of relativity, namely

A constant contribution mc? to the energy

A non-trivial transformation of time under boost
transformations

This only eliminates Pauli's phase if we neglect terms of order
1/c?>—they are introduced by the non-trivial time transformation
in the regular phase (without mc?) and would have to be cancelled
by a new phase in order to ensure invariance between inertial
frames. Continuing this procedure gives an iterative construction
both of the relativistic dispersion relation (1) and of Lorentz
transformations (2).
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Pauli's phase in classical physics

But there is nothing specifically quantum about this procedure.
Remembering that the phase of the one-particle wave function
historically originates in the principal function S of
Hamilton-Jacobi Theory.

0S 0S
H<X,8X>+at—0

So in our case

i % 2+§—0
2m \ Ox ot
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Pauli's phase in classical physics

Under a Galilei transformation, we can again either consider the
transformed HJ equation or demand that in the solution

1
S(x,t) = —Emvgt + mvpx

the integration constant transform as a velocity, i.e., vé =y — V.
In both cases, we have

S'(X ) # S(X + vt 1)
but rather
S' (X, t)=S(x' + vt t') — <mvx' + gvzt’)

A residue of relativity in classical mechanics?
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Connection to Relativity

The connection to relativity can be made just as in quantum
mechanics. We relate the transformation properties of S to the
relativistic transformation properties of t (going to the rest system
of the particle).

2
e % lvg, 1
trt-Sxtogt=t- —mc25(x, t)

The non-relativistic principal function is proportional to the first
order relativistic corrections to time in the particle’s rest frame.
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Connection to Relativity

The more familiar action is the principal function evaluated along a
trajectory, in this case x = vyt from tg to tg + At.

to+At 1 1 V2
S <:/ Ldt) = “miAt = —mc? <—%At)
o 2 2c

To be compared with relativistic proper time 7

12 1
~At— QA= At — ——
T 2 c? mc25

This is not entirely surprising, since the relativistic free particle
action is (proportional to) proper time. However, the
non-relativistic action is proportional to the first order relativistic
corrections to proper time, not simply to its fully non-relativistic
limit (¢ — o00), which is just coordinate time.
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Relativity from Proper Time

m The iterative construction of the relativistic energy-momentum
relation and of Lorentz transformations from the elimination
of the Pauli phase can thus be motivated more clearly entirely
in classical physics from the demand that the action be an
invariant measure of time along a trajectory, i.e., from the
notion of proper time identified with the classical action.

m It works, because when viewed in this way, the classical action
already is a first order relativistic correction and can thus be
used as the starting point for an iterative construction.

m The speed of light enters not through electrodynamics, but as
a proportionality constant that turns the action into a
measure of time.
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Fermat and Proper Time

The notion of time along a trajectory is not entirely alien to
classical physics.

Hoc supposito, supponantur duo media diverse nature in prima
figura (/ig. 109), in qua circulus AHBM, cujus diameter ANB separat
illa duo media, quorum unum a parte M est rarius, alterum a parte H
est densius; eta puncto M versus H inflectantur qualibet rect MNH,
MRH occurrentes diametro in punctis N et R.

Fig. 109.

Quum velocitas mobilis per MN, qu est in medio raro, sit major,
ex axiomate aut postulato, velocitate ¢jusdem mobilis per NH, et mo-
tus supponantur uniformes in quolibet videlicet medio, ratio temporis
motiis per MN ad tempus motis per NH componitur, ut notum est
omnibus, ex ratione MN ad NH et ex reciproca ratione velocitatis per
NH ad velocitatem per MN.

Pierre de Fermat (1601-1665)
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Maupertuis and Proper Time

But its connection to the action was explicitly denied.

En “méditant profondément fur
cette matiere , j'ai penfé que la lu-
miere , lorfquelle paffe d’un milieu
dans un autre , abandonnant déja
le chemin le plus court , qui eft
celui de la ligne droite , pouvoit
bien auffi ne pas fuivre celui du
temps le plus prompt. En effet ,
queﬁse préférence devroit-il y avoir
ici du temps fur I'efpace ? la lumiere
ne pouvant plus aller tout 2 la fois
par le chemin le plus court , & par
celui du temps le plus prompt ,
pourquoi iroit - elle plutdt par lun
de ces chemins que par lautre ?
Auffi ne fuit-elle aucun des deux ;

elle prend une route qui a un avantage
plus réel : le chemin qu'elle tient eft
celui par lequel la quantité dadlion ot

la moindre.

x

Pierre L. M. de Maupertuis (1698-1759)
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Two Optical-Mechanical Analogies

Both light rays and particle paths are determined through
variational principles.

m Since for light this can be derived from an underlying wave
theory, one can construct a corresponding wave theory of
mechanics, completing Hamilton's optical-mechanical analogy.
This led de Broglie and Schrodinger to matter waves and
wave mechanics.

m Since for light rays the quantity being minimized is a measure
of time, the same should hold true for the mechanical action,
a requirement that may be called Maupertuis’ optical
mechanical analogy. In both cases the quantity being
minimized is found to be the difference between coordinate
and trajectory time (the latter being always zero for light
rays). This can form the starting point for constructing
special relativity.
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Preliminary Conclusions

m The demand of finding an overarching theoretical framework
for optics and mechanics (i.e., using optical-mechanical
analogies to make the two theories more alike) is such a
strong constraint on the development of post-classical physics
that constitutive elements of both special relativity and
quantum mechanics can be derived from this demand.

m The incorporation of optics with electromagnetism in the 19th
century was not a necessary condition for obtaining key
insights of modern physics. It rather shifted the focus from
seeking an integration of optics and mechanics in terms of
variational principles to the role of the ether and the
properties of electromagnetic radiation.
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Preliminary Conclusions

m The elimination of Pauli's phase from quantum Galilei
transformations can form the starting point for an iterative
construction of special relativity.

m This can be understood in classical physics as constructing
from the classical action an invariant measure of time along a
trajectory, replacing absolute coordinate time.

m This works, because the classical action can be taken as the
first relativistic correction to proper time, a scalar under
changes of inertial frame.

m Historically, this procedure is related to a second
optical-mechanical analogy, which was problematized, but
never pursued.
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Introduction

The second part of this talk generalizes the conclusions of the first
part to a generally relativistic context, extending Maupertuis’
optical-mechanical analogy with the help of the equivalence
principle.

We show that this leads to a derivation of the space-time
transformations considered by Einstein in 1912, which can be
identified as approximate Rindler transformations.

Combining this with Hamilton's optical-mechanical analogy, an
Einsteinian Schrodinger equation is derived by a route alternative
to the familiar Kiefer-Singh procedure.
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Introduction

The relation of the Einsteinian Schrodinger equation to
Hamilton-Jacobi theory and a metric theory of spacetime is
examined in more detail.

As the Schrodinger version of the optical-mechanical analogy leads
to complex waves, an alternative route is developed, starting from
a relativistic Hamilton-Jacobi equation and leading to the
Klein-Gordon equation with purely real solutions.

The two optical-mechanical analogies are thus seen to yield basic
insights of special and general relativity, as well as two fundamental
wave equations, each raising different interpretational problems.
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Hamilton-Jacobi implementation of the Equivalence
Principle

The free particle Hamilton principal function is

- — 5 — 1 2
S'(t,x') = —mc*yt' + myv - x', where v = (1 —v?/c?) .
Assume that S’ transforms as a scalar under a transformation to
an accelerated frame of reference since when evaluated on the
particle trajectory it is proportional to the time measured in the
clock’s rest frame - and therefore invariant.
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Hamilton-Jacobi implementation of the Equivalence
Principle

Choose as the target S(t,x) = S'(t'(x, t), t'(x, t) the principal
function for a non-relativistic particle in a homogeneous
gravitational field. This is a Hamilton-Jacobi formulation of
Einstein's equivalence principle: The known Hamilton principal
function describing a particle in a homogeneous gravitational field
is declared to be equivalent the the characteristic function that is
obtained via acceleration from an inertial frame. The transformed
S is therefore required to satisfy the Hamilton-Jacobi equation

1 0§ 90§ oS

2 e —_— =
me” + 2m Ox5 Ox? +mag + ot 0. (1)
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H-J iteration to order c? yields new time transformation

As initial spacetime transformations try
!/ 1 2 /
X :x—i-Egt and t' = t.

To order c? the form (1) of the Hamilton-Jacobi equation is
maintained only if the time transformation is altered to

=t 1
- +§gXt.

We will recognize this as delivering an accelerated frame analogue
of Pauli’s phase.
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H-J iteration to order ¢ 2

modifies the H-J equation

Iterating to order 1/c* we must modify the target principal
function to satisfy the Hamilton-Jacobi equation

1 0§ 0S 1 (8585) 0S _0

2 gX)
1 LYY 2 (9292
me +mc ( + 2m Ox, 0x®  8m3c2 \ Ox, Ox? ot

The spacetime transformations that produce this form when

transforming from an inertial frame are

1 1 11
t=t+ = <gxt + 6g2t3> + = g€ 3¢3,

and 1 11
r_ 2 2.2
X —X—I—Egt +c2§Xg [

These are the lowest order contributions to Rindler transformations
- also Einstein’s transformations of 1912.
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Einstein 1912 Interlude

Pages from Einstein's Prague notebook, 1912
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Schrodinger’'s Hamilton-Jacobi route to non-relativistic
quantum mechanics

Schrodinger observed that a complex pure phase wave with phase
S/h satisfied his wave equation as a consequence of the
Hamilton-Jacobi equation (in the limit & — 0),

" o O s/
<—2mV +U(X)—/hat>e

) e/" 4 O(h) — 0 as h — 0.
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Greenberger's phase arises in an analogous manner to
Pauli's phase

The Schroédinger equation that corresponds in this manner to the
Hamilton-Jacobi equation (1) is

h? s L O\ is/n
<—2mV + mgx — Ihat> e =0.

Observation 1): The principal function that is obtained under
Einstein's transformations up to order c? satisfies this Schrodinger
equation (28). To this order

1 1 1
S(X,t)=-m <c2t—i— Evzt —vx — —vgt® +gxt + —g*t> — v,y — vzz> :

2 6
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Greenberger's phase arises in an analogous manner to
Pauli's phase

Observation 2): On the other hand, if the extended Galilean
transformation x’ = x + %gt2 and t' = t of the free principal
function is used, the result is

1 1
S(X, t)Galiteo = —m <62t + §v2t — VX — Evgt2 —Vyy — vzz> .

Concluding observation): The difference (divided by £),

—m(gxt + £g%t3), is precisely the term that Greenberger adds to
the phase obtained by transforming the free particle Schrodinger
equation. The difference arises because the Galilean result does
not fully express the proper time.
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An Einsteinian Schrodinger equation

The wave function W = e*/" when S developed to order 1/c?,
satisfies as a consequence of the Hamilton-Jacobi equation, the

Einsteinian Schrodinger equation (to order A°)

8m

12 1 ax n*
2 N2 A 282 NV o2 -
<mc 5 \Y +mgx+c2< h2 \Y% 3V V))lb(x,t)

L OYP(X, t)
ih T
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A pre-Ehrenfest theorem

We can construct pure phase solutions of the Einsteinian
Schrodinger of the form

W, (X, t) = o (J 2G5 dey [ VS(%,t:0)-dR) /1

where the constants « deliver a complete solution of the principal
function S. Then we identify a generally variable angular frequency
w(X, t;a) = 195
o hot’
and a variable wave number vector
K(Z, t;a) = %65

Thus the Hamilton-Jacobi equation is reinterpreted as a wave
dispersion relation
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A pre-Ehrenfest theorem

Thus if we build an appropriate superposition of the states over «

that peaks at kp we can construct a wave packet that moves along

the classical spacetime trajectory. This follows from the classical
dx? _ OH

dynamical equation - = N since the group velocity is

dw | _ OH(Z,P)

Dk, ko Op,  |P=hko

Appropriately constructed wave packet solutions of the
Einsteinian-Schrodinger equation therefore move along the correct
classical spacetime trajectories.



Proper Time before Relativity

LBa\ck to Jacobi, Maupertuis, Huygens, and Fermat

Extension to Rindler spacetime

The full Rindler transformations to a rigidly accelerated frame of
reference are

2

t
x' = <C —i—x) cosh (g—> — C—,
g ¢ g
2 t
et/ = (& +x) sinh (£1).
g c

Under these transformations we read off from the transformed
Hamilton-Jacobi equation that the Hamiltonian is

1/2
) = —me? (14 ) (14 2 /
X P)= ¢ c? m2c2

and
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Rindler proper time and metric

This Hamiltonian corresponds to a maximized proper time

increment 12
2 2
dr = <(1+g)2<) - "2> dt,
c c

i.e., one nontrivial metric component
gX>2

g00=—<1—|—§
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Klein-Gordon equation

Consider a real-valued wave, sin(eS), where € is a constant with
dimension one over an action.

Theorem: This wave satisfies the Klein-Gordon equation on the
Rindler background in the limit of large € as a consequence of the
Hamilton-Jacobi equation!

Proof: Keeping only €2 terms, we find
(&"'V .V, — €m?c?) sin(eS)

o gx\ 2 € 85_ I @ R .
= (1 + §> = <3t H(X, VS)) <6t + H(X, VS)) sin(eS)

=0.
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Back to Jacobi, Hamilton, and Fermat

We have found our way back to a comprehensive purely classical
implementation that unifies the wave and particle treatments of
both massive and massless particles, provided that a relativistic
framework as suggested by Maupertuis' optical-mechanical analogy
is accepted. When m = 0 we can construct a (scalar) light wave
packet that satisfies Fermat's principle. When m # 0 we have
wave packets that move along the correct relativistic trajectories.
This is a program that could have in principle been undertaken by
Jacobi or even Hamilton if they had had reason to take
Maupertuis' optical-mechanical analogy seriously and to believe in
proper time, for instance if muons had been discovered earlier.
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