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Introduction

Introduction

Focus of this talk:

I will focus mainly on the discussions through the mid 1970’s
concerning the realization of the diffeomorphism group as a
phase space transformation group, and the associated notion
of gravitational observable.

Questions to be addressed:

What were the underlying fundamental principles that
determined the attitude of the key players with regard to the
principle of general covariance?

What factors led to the limited communication between the
two major approaches?

Could the lack of attention to the significance of Hamiltonian
constraints have impeded progress in the invention of a
quantum theory of gravity?



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The ADM action principle

2. WHAT IS MORE FUNDAMENTAL? FREE PARTICLE
EXAMPLE AND HAMILTON-JACOBI THEORY



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The ADM action principle and the free relativistic particle

ADM - quantum action principle. Major input is first order
Lagrangian. [Arnowitt & Deser, 1959] “Further, in the quantum
theory, it becomes even more necessary to make this choice [of first
order form]. This fact has been stressed by Schwinger in his
formulation of quantization which we shall employ”. p. 745
Relativistic free particle

S =

∫
dt
(

paq̇a −
(
1 + ~p2

)1/2)
=

∫
dt (paq̇a − H(~p))



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The free relativistic particle

Under independent constant variations δqa and δt about a
solution, since the Lagrangian is invariant,

δS = paδqa − H(pa)δt

Leads to Hamilton-Jacobi equation

∂S

∂t
+ H

(
∂S

∂qa

)
= 0.

Classical solutions from complete solution S(~q, t; ~α),

∂S

∂αa
= 0.



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The ADM introduction of constraints

Arnowitt, Deser and Misner 1962. [Arnowitt et al. , 1962]
Promote to relativistic formulation by introducing q0 on equal
footing with spatial position. Write variation of action by
amending the mass shell condition using a Lagrange multiplier λ,

δS = pµδqµ − λpµpµ

Observation that this corresponds to parameterizing the particle
four-position qµ(θ), but no effort to investigate within the
Hamiltonian formalism the realization of the underlying
reparameterization group.
Not necessary since the corresponding ‘Hamilton-Jacobi’ equation
already relates the observable, θ-independent variables qµ!

1 +
∂S

∂qµ
∂S

∂qµ
= 0.



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The ADM action principle

Arnowitt and Deser in 1959 were following the lead of their thesis
advisor, Schwinger, in placing their fundamental stress on the
transition amplitudes between physically observable states - with
the phase of the wave function approximated by the Hamilton
principal function,

Ψ(qµ) ≈ e
i
~S(q)

Wheeler shared this view: [Wheeler, 1964b] “No one has found any
way to escape the conclusion that geometrodynamics, like particle
dynamics, has a quantum character. Therefore, the quantum
propagator, not the classical history, is the quantity that must be
well defined.” p. 242



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

[Wheeler, 1964a] “Closer look shows that classical dynamics owes
its structure to quantum mechanics”, p. 328

And a familiar quote from the weighty
Gravitation[Misner et al. , 1973] “The Hamilton-Jacobi description
of motion: Natural because ratified by the quantum principle”, p.
641



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The true Hamilton-Jacobi equation

But this is not the true Hamilton-Jacobi equation. The true
equation follows from the variation of the qµ(θ) and of θ about
solutions.

The parameterized free particle actually satisfied the conditions of
Rosenfeld’s case 1 in his 1930 article (though he did not analyze
this specific model). Write the Lagrangian with an auxiliary
variable N ,

L =
1

2N
ηµν

dqµ

dθ

dqν

dθ
− 1

2
N .



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

Then varying about solutions we find (with π the momentum
conjugate to N),

δS = pµδqµ + πδN +

(
−pµ

dqµ

dθ
+ L− πdN

dθ

)
δθ (1)

= pµδqµ + πδN − HRBDδθ,

where

HRBD(qµ,N , pν , π, θ) = pµ
dqµ

dθ
− L + λπ

is the vanishing Rosenfeld-Bergmann-Dirac Hamiltonian.



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

The true Hamilton-Jacobi equation

So the Hamilton-Jacobi equation is

HRBD

(
qµ,N , ∂S

∂qµ
,
∂S

∂N
, θ

)
+
∂S

∂θ
= 0.



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

Since we have the general solution for the free particle we merely
need to substitute into the action to get the complete solution. It is

S(qµ,N , θ, p̄ν , π̄) = p̄µxµ +

(
π̄ − θ

2
(p̄2 + m2c2)

)
N

+
1

2

(
p̄2 + m2c2

)(
θ

∫ θ

0
dθ1λ(θ1)−

∫ θ

0
dθ1

∫ θ1

0
dθ2λ(θ2)

)
−π̄
∫ θ

0
dθ1λ(θ1)

But to recover the particle trajectories one must impose the mass
shell condition on the constants p̄µ after performing partial
derivatives!



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

Phase space generator

Rosenfeld also showed, as did Bergmann and his collaborators in
the early 1950’s, that the phase space generator of infinitesimal
reparameterizations is the variation (1) evaluated for arbitrary
infinitesimal reparameterizations θ′ = θ + ε(θ) = θ −N−1ξ(θ).
Since this is a symmetry variation the generator vanishes. The
(active) variations are δ̄qµ = pµξ, p̄ν = 0, and δ̄N = d(N ξ)

dθ .



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

Bergmann’s reduced phase space

In 1970 Bergmann [Bergmann, 1970] employed a model similar to
the free particle to illustrate how the action of this generator
sweeps out equivalence classes in phase space. I will illustrate in
1+1 dimensions.

Thus the gauge trajectories are q1 = q̂1 + p1

p0

(
q0 − q̂0

)
, and

p1 = constant for fixed q̂1 and q̂0.

Note that since the general solutions for arbitrary parameterizations
are q0(θ) = q̄0 + f (θ)p0 and q1(θ) = q̄1 + f (θ)p1 for constant q̄0

and q̄1, both p1 and q̂1 are independent of θ. They are
reparameterization invariants. They also satisfy the Poisson
bracket relations

{
q̂1, p1

}
= 1 and

{
q̂1, p0

}
= p1/p0.

The q̂1 and p1 are coordinates of the reduced phase space. This is
the algebra of the Newton-Wigner spatial position operator, so this
construction actually brings one closer to a four-dimensional
formalism.



Which is more fundamental? Free particle example and Hamilton-Jacobi theory

Bergmann’s reduced phase space

Note that these invariants can be obtained through the
performance of a finite reparameterization-induced symmetry
transformation with finite variable-dependent descriptor:

Choose the gauge θ = q̂0(θ), then find the descriptor that gauge
transforms q0(θ) to θ, i.e.

θ = q̂0(θ) = q0(θ) + ξp0

so the finite descriptor is

ξ =
θ − q0(θ)

p0
,

and the gauge transformed spatial variables are

q̂a(θ) = qa(θ) +
θ − q0(θ)

p0
pa.



Bergmann-Komar Hamilton-Jacobi theory

3. BERGMANN-KOMAR HAMILTON-JACOBI THEORY



Bergmann-Komar Hamilton-Jacobi theory

Bergmann Komar HJ theory

Bergmann began his analysis of the Hamilton-Jacobi formulation
of general relativity in 1966 [Bergmann, 1966]. He assumed from
the start that the appropriate metric variables were the spatial
metric components, and that one could work exclusively in the
constrained phase space. He was able to prove that the Hamilton
principle function could contain no explicit dependence on the
arbitrary spacetime coordinates. This led him to the declaration
that ”time is frozen”.

Note that this is consistent with the particle example in which S
on shell is independent of θ.



Bergmann-Komar Hamilton-Jacobi theory

Bergmann Komar HJ theory

Both Bergmann and Komar followed up on this initial analysis
which described the reduced phase space in general relativity, with
the true two degrees of freedom of the classical gravitational field.
These variables were canonical, and they did generate phase
transformations between equivalence classes. [Komar, 1967]
[Komar, 1968] [Komar, 1970a] [Bergmann et al. , 1970]
[Komar, 1971]
[Bergmann, 1971][Bergmann, 1973a][Bergmann, 1973b][Komar, 1980]

Neither Bergmann nor Komar addressed the question, in the
context of Hamilton-Jacobi theory, of whether intrinsically
determined coordinates could be introduced which would describe
time evolution. This is a surprise since they were the first to
introduce this idea a decade earlier!



Bergmann-Komar Hamilton-Jacobi theory

Bergmann Komar HJ theory

A quotes from Komar 1970 [Komar, 1970b]

“In view of the fact that that the observables of a theory, when
expressed in terms of their operator aspect, must generate
canonical transformations compatible with the equations of
motion, it follows that the observables of the general theory of
relativity must must commute with the generators of the Einstein
group! It therefore appears to be impossible to employ the
observable dynamical variables of the general theory to provide a
realization of the Einstein group. There being no other
distinguished spacetime symmetry group available, it would appear
that the possibility of constructing a unique quantum theory of
gravitation is placed in jeopardy.”



Bergmann-Komar Hamilton-Jacobi theory

“Rather than exploring this point further, in this section we
propose to impose a preferred spacetime symmetry”

The specialization is to asymptoticaly flat spacetimes with a
preferred Bondi-Metzner-Sachs asymptotic symmetry.
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ARNOWITT-DESER-MISNER ‘INTRINSIC COORDINATES’



Arnowitt-Deser-Misner ‘intrinsic coodinates’

The ADM approach

Arnowitt, Deser, and Misner, following Schwinger’s lead in
quantum electrodynamics, proposed that the
diffeomorphism-invariant degrees of freedom of general relativity
could be attained through the imposition of coordinate conditions.
[Arnowitt & Deser, 1959, Arnowitt et al. , 1959b,
Arnowitt et al. , 1959a, Arnowitt et al. , 1960d,
Arnowitt et al. , 1960e, Arnowitt et al. , 1960f,
Arnowitt et al. , 1960b, Arnowitt et al. , 1960a,
Arnowitt et al. , 1960c, Arnowitt et al. , 1961b,
Arnowitt et al. , 1961a, Arnowitt et al. , 1962]



Arnowitt-Deser-Misner ‘intrinsic coodinates’

Asymptotic coordinate conditions

Similarly to the later Komar-Bergmann approach, they considered
asymptotically flat spacetimes. Their proposal, following Arnowitt
and Deser’s initial discussion of linearized gravity, was to identify
the traceless, transverse components of the three metric as
representing the true dynamical degrees of freedom. They showed
that this choice could be implemented through the coordinate
conditions

x0 = −∇−2(πT +∇2πL),

and

xa = ga −
1

4
∇−2gT

,a .



Arnowitt-Deser-Misner ‘intrinsic coodinates’

Perferred intrinsic coodinates

They insisted that there did indeed exist preferred global frames of
reference, and these were determined by their requirement that the
Hamiltonian must not depend on their intrinsic time x0. They
showed that their intrinsic choice satisfied this requirement, and
that furthermore permissible canonical transformations
corresponding to changes in intrinsic coordinates should be limited
by this time independence requirement.

Curiously(?), ADM never made any reference to Bergmann and
Komar’s introduction of intrinsic coordinates - starting in 1958 -
nor to the Bergmann school’s analysis of constrained Hamiltonian
dynamics. [Komar, 1958]

Nor did Bergmann and Komar later extensively cite ADM!



Komar Bergmann intrinsic coordinates

KOMAR BERGMANN INTRINSIC COORDINATES



Komar Bergmann intrinsic coordinates

Bergmann and Komar launched a program in 1958 for correlating
the dynamically determined temporal development and spatial
position with the behavior of the gravitational field itself.
[Bergmann & Komar, 1960, Bergmann, 1961b, Bergmann, 1961a,
Bergmann & Komar, 1962]. This was actually the first suggested
use of intrinsic coordinates. They insisted in the vacuum case that
the intrinsic coordinates be local spacetime scalar functionals of
the metric. They were able to show that the Weyl scalars could be
used for this purpose. Furthermore, they showed that these scalars
could be written in terms of the three metric and conjugate
momenta. [Bergmann & Komar, 1960]

A thorough discussion of the proposed use of intrinsic coordinates
can be found in Bergmann’s 1962 Handbuch der Physik article
[Bergmann, 1962]



Komar Bergmann intrinsic coordinates

Why did they abandon this program? I suggest that it has to do
with the breakthrough that Dirac made in 1958 [Dirac, 1958] in
simplifying the primary constraints of general relativity. There are
two significant elements of this story. The first is that Dirac
choose to consider infinitesimal coordinate transformation as either
tangent to an initial constant time hypersurface, or as along the
direction perpendicular to the surface,

x ′µ = xµ + nµξ0 + δµa ξ
a,

where nµ = (N−1,−N−1Na) is the perpendicular, N is the lapse,
and Na is the shift. Secondly, Dirac isolated those canonical

variables, including those involving time derivatives, that did not
vary under four-dimensional diffeomorphisms that did not alter the
chosen foliation. The outcome for Bergmann was that, contrary to

his initial Hamiltonian formulation with Anderson in 1951
[Anderson & Bergmann, 1951], one is justified in dropping the
lapse and shift as canonical variables.



Komar Bergmann intrinsic coordinates

However, Bergmann and Komar did in 1972
[Bergmann & Komar, 1972] give a group theoretical explanation
for the Dirac Poisson algebra that resulted from his infinitesimal
diffeomorphism decomposition. They showed that one was not
realizing in phase space the original diffeomorphism group, but
rather a diffeomorphism-induced phase space transformation group.
This group has come to be called the Bergmann-Komar group.



An intrinsic Hamilton-Jacobi approach

AN INTRINSIC HAMILTON-JACOBI APPROACH



An intrinsic Hamilton-Jacobi approach

The generator of infinitesimal transformations

This is where I and my collaborators enter the picture.
[Pons et al. , 1997, Pons et al. , 2000c, Pons et al. , 2000a,
Pons et al. , 2000b, Pons & Salisbury, 2005][Pons et al. , 2009a,
Pons et al. , 2009b, Pons et al. , 2010] We have shown for several
models, including classical Einstein-Yang-Mills and also employing
Ashtekar variables, that the generator of the full four-dimensional
diffeomorphism-induced group is of the form

Gξ(t) = Pµξ̇
µ + (Hµ +

∫
d3x ′

∫
d3x ′′Nρ′C ν′′

µρ′Pν′′)ξ
µ.

where {
Hµ(x),Hρ(x ′)

}
= C ν′′

µρ′ [gab]Hν′′



An intrinsic Hamilton-Jacobi approach

Time evolution versus diffeomorphisms

The evolution in time is generated by

H =

∫
d3x (NH0 + NaHa + λµPµ) .

The finite diffeomorphism generator exp
(
s
∫

d3x Gε(t)
)
transforms

solutions into new solutions.



An intrinsic Hamilton-Jacobi approach

Enlargement of phase space

Note that the lapse function N and shift Na must be retained as
canonical variables.

Note also that contrary to popular belief, the Hamiltonian
formulation does not fix a time foliation. New foliations result in
new multipliers λµ and new Hamiltonians as a consequence of the
time dependence of the Hamiltonian.



Classical intrinsic dynamics

4. CLASSICAL INTRINSIC DYNAMICS AND NATURAL
WHEELER DEWITT EQUATIONS



Classical intrinsic dynamics

The implementation of Rovelli’s partial variable program

Now that we have the full diffeomorphism group at our disposal,
we can employ it to establish correlations between partial variables.
One possible implementation, in principle, is to locate temporal
and spatial landmarks by referring to curvature even in the vacuum
case. There are of course many more possibilities when matter is
present. We will employ these landmarks as “intrinsic”
coordinates. Such coordinates must be formed from spacetime
scalars. Thus we choose Xµ[gab, p

ab].

In the vacuum case we propose the use of the four Weyl curvature
scalars, as originally suggested by Komar in the 1950’s. They are
quadratic and cubic in the Weyl tensor. Bergmann and Komar
showed in 1960 that they are expressible solely in terms of the
three metric and its conjugate momenta.



Classical intrinsic dynamics

Intrinsic coordinate gauge conditions

We choose intrinsic coordinates through the gauge conditions
xµ = Xµ[gab, p

ab]. Given any solution trajectory in phase space we
can then determine the phase space dependent finite descriptors
εµ[gab, p

ab] := εµ[y ] that will gauge transform these solutions to
those that satisfy the gauge conditions.



Classical intrinsic dynamics

The explicit construction of evolving constants of the
motion

This construction yields Taylor expansions in the coordinates xµ -
now themselves diffeomorphism invariants. The coefficients in the
Taylor expansions are functionals of gab and pab that are explicitly
diffeomorphism invariants. This applies also to the invariant lapse
and shift.

Iφ =
∞∑

nµ=0

1

n0! n1! n2! n3!
(x0)n0(x1)n1(x2)n2(x3)n3 Cn0,n1,n2,n3 [gab, p

ab]



Classical intrinsic dynamics

Kuchar-inspired canonical transformations

Canonical transformations can be carried out to new canonical
variables including Xµ and canonical conjugates πµ - but without
imposing gauge conditions. The theory in terms of these new
variables is still fully diffeomorphism covariant - with corresponding
Hamiltonian constraints. Each choice yields a new form for the
constraints and a new Wheeler-DeWitt equation with a
corresponding “natural” choice of temporal and spatial partial
variables.

This “natural” choice is the one that results through the solutions
of the Wheeler-DeWitt equation.



Classical intrinsic dynamics

Fully relative general relativity

Claim: The range of intrinsic coordinates is coincident with the set
of coordinates obtained under arbitrary coordinates transformations

Corollary: For every choice of coordinate chart there is a
corresponding choice of intrinsic coordinates.
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