A Generalized Schrodinger Equation
for Loop Quantum Cosmology

Don Salisbury
Austin College

Marcell Grossman 11
Berlin, July 2006

7/25/06 ST otle cn



Plan of Talk

1. Review of canonical coordinate-transformation-induced
symmetry group

2. Classical intrinsic time gauge fixing

3. Proposed generalized time-dependent Schrodinger in
quantum cosmology

4. Semi-classical limit
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1 - Canonical symmetry group

The dynamical model
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The symmetry group

Infinitesimal time transformations are projectable under the Legendre map

(functions of N are not projectable )

'=t-N'E=0ON=NNE+ N%(N‘IS) =

Symmetry is a transformation group on the variables a, N, and their
canonical momenta

Canonical generator of infinitesimal symmetry transformations

2 2
Kp, Py :
— + — |+
S 24a 24’ Py
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2. Intrinsic Coordinates

General solutions

W | —

t t' ; /
Not+ [dt' [dt"A(t") + (7 > | Not+ [ar [ara(t")+ 7a;
a(t) =da, ° 2-2613 ¢(t) =@+ \/§ In ° 2_2613
0

N(t)=N, + Zdt')u(t')

Choose intrinsic time T

o N, + { dr { dA)+ |
I'={"a (t):> 024 |2
0 a

7/25/06 ST Cotle <o



Approach 1: transform to intrinsic coordinates

Claim: ¢(1(T)) and N(r(T))j—;

are invariant under the canonical action of the canonical symmetry
group

32  (0°T 32 0*T
¢(T)=¢o+5 3K1n(ag)=¢(t)+2\/;ln(a2(t))
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Approach 2: gauge transform to solutions satisfying intrinsic
coordinate choice

Generator of finite gauge transformation

V& (s,t) = exp(s{—,Gg (t)})

Not + [dt' [ dt"A(¢") + sE(1) + 0 7ay
0 0

W | —

a. (s,t) = a,

-2 3
a,

Not+ [dt' [ dt"A(t") + sE(1)(a
0 0

2
. (s5,1) = ¢, + \/;m

-2 3
™~ aj

N(t)+ s&()

Solve =/ _261;:2(1,1 ) for S and substitute into other variables
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Approach 3: impose gauge conditions

t=10"a’(t)
Preservation in time leads to new condition
6 2
N+ o
KD,

Dirac procedure yields following equations of motion

AR
Ka'p, 2a

. 607

¢=- 3p¢ Py =0
Ka'p,
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Approach 4: solve constraints to eliminate a and p,
3/

N =2t
412

The independent variables ¢ and p , are governed by the gauge fixed

Hamiltonian

3p
HGF= ==t

K t
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3. Generalized time-dependent Schrodinger equation

Use discrete time eigenvalues from loop gravity

thgk, k=021, 2, ...
Let ‘w(ﬁba tk+1)> = (1 B lé—;;) ‘w(¢’ t")>
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4. Semi-classical limit

Take 1nitial state to be minimum uncertainty wave packet

o-0,) .p,
> +1
40 h

Y(g1,) =c eXp[—(

Then 1t follows that

- ) -
3 At

(¢‘%‘J:t)

1, +At) =c exp|- o) 4P

UJ((po ) ¢ €xp 107 lh
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