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Introduction

Focus of this talk:

The evolving work over two decades in Syracuse, New York,
by Peter Bergmann and his associates that led to the notion
of general relativistic reduced phase space whose elements
were full four-diemsional di↵eomorphism invariants

The relationship of this work to later Hamilton-Jacobi
approaches to general relativity

Some questions to be addressed:

How did the recognition emerge that the realization of general
covariance in phase space necessitated metric field
dependence of the transformation group?

What is the relation between the modern geometric
di↵erential description and Hamilton-Jacobi approaches?
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2. BRIEF HISTORY OF HAMILTONIAN GENERAL
COVARIANCE AT SYRACUSE
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Rosenfeld’s 1930 tetrad gravitational Lagrangian

“Zur Quantelung der Wellenfelder”, Annalen der Physik 397, 113
(1930) Translation by Salisbury and Sundermeyer [Rosenfeld, 2017]
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Rosenfeld’s 1930 tetrad Hamiltonian density prehistory!

Rosenfeld invented a systematic procedure for solving for the
velocities Ėµ

I in terms of the conjugate momenta given that the

Jacobian matrix @2L
@Ėµ

I Ė⌫
J

is singular. Although he did not do this

explicitly for this model, the result (see
[Salisbury & Sundermeyer, 2017] ) is

H = H0

h
gab, p

ab,Aa, p
a, , †

i
+ �IF

I + �IJF
[IJ] + �F

where F
I , F [IJ] and F are primary constraints and �I , �IJ and �

are arbitrary spacetime functions.

Preceeding Bergmann and Dirac by twenty years! See
[Salisbury, 2009].
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Rosenfeld’s infinitesimal phase space symmetry generator

Rosenfeld proved that the vanishing Noether charge generated the
correct variations of all of the phase space variables under all of
the local symmetries. Most importantly for us is that the active
variations under the infinitesimal coordinate transformations
x
0µ = x

µ + ⇠µ(x) are correct.

His conserved and vanishing generating density is

�F
I
e0I ⇠̇

0
�F

I
eaI ⇠̇

a
�FA0⇠̇

0
�p

aI
e⌫I ⇠

⌫
,a�p

a
A⌫⇠

⌫
,a�HA0⇠

0
�Ga⇠

a

�F ⇠̇ + p
a⇠,a + i

e

~c p  ⇠ � i
e

~c p † †⇠ + F[IJ]⇠
IJ = 0



HJObservables

Brief history of Hamiltonian general covariance at Syracuse

Peter Bergmann and Paul Dirac

We leap two decades forward to the contributions to constrained
Hamiltonian dynamics of Peter Bergmann and Paul Dirac -
beginning in 1949.

Dirac never concerned himself with the phase space realization of
the full general covariance group. See his Vancouver lectures,
[Dirac, 1950] [Dirac, 1951]

[Bergmann, 1949], later with Jim Anderson
[Anderson & Bergmann, 1951] and numerous collaborators
including [Goldberg, 1953] did concern themselves with this
symmetry. In particular a joint publication with Ralph Schiller
[Bergmann & Schiller, 1953] explicitly employed the vanishing
Noether charge.
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The origin of the vanishing Noether charge

Assume that the Lagrangian density L plus a term linear in second
derivatives Sµ = f

Aµ⇢(y)yA,⇢ transforms under infinitesimal
coordinate transformations x 0µ = x

µ + ⇠µ(x) as a scalar density of
weight one, yielding an identity
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LA = 0 are the Euler-Lagrange field equations for the fields yA(x).
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The origin of the vanishing Noether charge and the
Anderson Bergmann generator

Then when the field equations are satisfied, defining

Cµ := ��̄Sµ +
�
L+ S

⌫
,⌫

�
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d
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Z
d
3
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[Anderson & Bergmann, 1951]

0 = C0 = 0
Aµ⇠

µ + 1
Aµ⇠̇

µ

They showed that the 1
Aµ were primary constraints.
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The di↵eomorphism Lie algebra puzzle

Anderson and Bergmann proved that no higher time derivatives of
the descriptors could appear - even when considering nested
commutators of this generator.

Yet nested commutators of the di↵eomorphism Lie algebra

⇠µ1,⌫⇠
⌫
2 � ⇠µ2,⌫⇠

⌫
1

do yield higher time derivatives. Does one therefore have a
realization of di↵eomorphism covariance?
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Dirac’s Hamiltonian and Bergmann’s interpretation

[Dirac, 1958] proposed that the proper candidates for gravitational
phase space variables should have the property that their
transformations under spacetime coordinate changes do not
depend on time derivatives of the descriptors ⇠µ.
[Bergmann, 1962] deduced that the descriptors involved a

compulsory metric field dependence,
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µ✏0 + �µa ✏

a

where n
µ =

�
N

�1,�N
�1

N
a
�
is the normal to the spacelike

hypersurface. N and N
a are the lapse and shift components of the

metric

gµ⌫ =

✓
N

2
� gabN

a
N

b
gabN

b

gabN
b

gab

◆
.



HJObservables

Brief history of Hamiltonian general covariance at Syracuse

The Bergmann - Komar group symmetry group

Bergmann also calculated the resulting commutator algebra,
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e
ab is the inverse of the 3-metric gab.

[Bergmann & Komar, 1972] interpreted this algebra as representing
a compulsory non-local metric-dependent transformation group.
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3. GENERAL PHASE SPACE TRANSFORMATIONS OF FIELD
SOLUTIONS
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Bergmann and Schiller - 1953

[Bergmann & Schiller, 1953] identified the form of the tangent
bundle functional fA (yB , yC ,µ) that could be translated into a
phase space variation �yA

�
yB ,⇡C

�
that transformed to new

solutions of Einstein’s equations.

They argued that the relevant physically meaningful phase space
was the quotient space of the larger group modulo the
di↵eomorphism invariance subgroup. They called this the reduced
phase space.
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Hamilton-Jacobi variations of the action

Hamilton-Jacobi variations with an eye toward quantization were
first undertaken in field theory by [Weiss, 1936], inspired by the
[Cartan, 1922] treatment of the finite dimensional case. Weiss
defined a “complete variation” in which both the fields on the
initial and final spacelike hypersurfaces , as well as the
hypersurfaces themselves are independently varied, requiring that
all variations are to new solutions. The net variation is then

�0yA(x) =: yA(x)� yA,µ(x)�x
µ(x).

The corresponding varied action about solutions is then

�S =

Z h
⇡̃A�yA � H̃�t � P̃a�x

a
i
d
3
x |

t1
t2
,

where the ‘tilde’ signifies that the momenta are to be considered
tangent space functionals.
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Relativistic free particle example

Consider the reparameterization covariant action for a free particle
of unit mass, in units in which c = 1,

S =

Z
(�q̇

2)1/2d✓ =

Z
Ld✓,
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dq
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Reparameterization covariance

However, before one makes this choice the Hamiltonian model is
reparameterization covariant - but under the infinitesimal
parameter change ✓0 = ✓ � (�q̇

2)�1/2⇠(✓). (The factor (�q̇
2)�1/2

is the analogue of Bergmann’s required lapse function.) Indeed,
substitution of this variation with the corresponding variation of qµ

into the variation of the action yields the correct generator of this
variation,
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Particle invariants and intrinsic time evolution

The reparameterization generator may deployed to transform the
particle solutions in any parameterization ✓0 to solutions satisfying
the gauge condition q

0 = ✓. The general solution is a power series
in ✓ whose coe�cients are reparameterization invariants. The
invariant observables associated with q

a are (see
[Pons et al. , 2009])

q
a(✓) = q

a(✓0)�
p
a

p0
q
0(✓0) +

p
a

p0
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The conventional particle H-J approach

The free particle symplectic potential becomes with this gauge
choice

dS = �H(pb) + padq
a = � (pap

a + 1)1/2 d✓ + padq
a

The general particle solutions can obtained by finding the complete
solution of the Hamilton-Jacobi equation

@S

@✓
+ H

✓
@S

@qb

◆
= 0.

The complete solutions S(qa, ✓;Pb) depend on the three constants
Pb.
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Application to general relativity

Although a form of the symplectic potential has been used to
advantage, in particular by [Lee & Wald, 1990], they did not derive
from it the general form of the generator of di↵eomorphism
symmetries. Their work was actually the stimulus of my work with
Pons and Shepley [Pons et al. , 1997] in which we proved that the
decomposition of infinitesimal coordinate transformations in terms
of tangent and normal variations was required in order to project
the tangent space variations onto phase space (the cotangent
space).

We actually derived the resulting generator through group
theoretical arguments.
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The complete di↵eomorphism generator

The complete generator of di↵eomorphism-related transformations
general relativity is

G✏(t) = Pµ⇠̇
µ + (Hµ +

Z
d
3
x
0
Z

d
3
x
00
N
⇢0
C
⌫00
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⌫00
µ⇢0 [gab]H⌫00
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A claim and a puzzle

I claim that this generator can actually be obtained through the
substitution of variations of the metric fields directly into the
symplectic potential - provided one retains the lapse and shift.

This is actually in agreement with the fact that when vector
arguments of the symplectic two-forms are null vectors this
corresponds to the fact that these vectors are obtained through the
action of the gauge symmetry group.
There are two puzzles. The first is the question why Bergmann
abandoned the lapse and shift as canonical variables. His original
retained all the variables, and did contain time derivatives of the
descriptors. The second is: why didn’t Pons, Salisbury, and
Shepley make this substitution?

Note that the lapse and shift must be retained in order to
arbitrarily alter the time foliation.
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4. AN INTRINSIC HAMILTON-JACOBI APPROACH TO
GENERAL RELATIVITY
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First reconsider the free particle

The choice ✓ = q
0 was an example of a choice of intrinsic time. In

the case of general relativity we have proven that candidates must
be spacetime scalars. In this reparameterization covariant model
they must be reparameterization scalars. In this choice was one of
many possibilities.
We could choose the proper time as the intrinsic time through a
judicious canonical transformation of the symplectic potential.
Choose as the time variable T = �q

0/p0. Make a canonical
change of variables by finding a generating function F (q0,T ) such
that p0dq0 = PdT ++ @F

@q0 dq
0 + @F

@T dT . The it turns out that the
new generator of projectable reparameterizations is

G (✏) = ⇠(P + lnT ) +
⇠

2
(pap

a + 1) = 0.
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Time evolution versus di↵eomorphisms

This can be solved so as to eliminate both T and P , ultimately
yielding the transformed symplectic form
dS =

⇥
�

1
2 (p

a
pa + 1) + ln(✓)

⇤
d✓ + padq

a.
Our proposal is that similar canonical transformations to intrinsic
spacetime coordinates can be carried out in general relativity
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An implementation of Rovelli’s partial variable program

Now that we have the full di↵eomorphism group at our disposal,
we can employ it to establish correlations between partial variables.
One possible implementation, in principle, is to locate temporal
and spatial landmarks by referring to curvature even in the vacuum
case. There are of course many more possibilities when matter is
present. We will employ these landmarks as “intrinsic”
coordinates. Such coordinates must be formed from spacetime
scalars. Thus we choose X

µ[gab, pcd ].

In the vacuum case we propose the use of the four Weyl curvature
scalars, as originally suggested by [Komar, 1958]. They are
quadratic and cubic in the Weyl tensor.
[Bergmann & Komar, 1960] showed that they are expressible solely
in terms of the three metric and its conjugate momenta.
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Non-trivial classical evolution with spatial landmarks

The resulting evolution is with respect to partial variables - in the
sense of [Rovelli, 1991].

There is also obvious variation in spatial directions. There is more
to space than topology!

We shall see that having selected intrinsic coordinates the evolution
is unique with regard to the in principle measureable curvature
coordinates. The behavior is insensitive to whatever coordinates
one employed before transforming to intrinsic coordinates. But on
the other hand, given any initial intrinsic coordinates one can
undertake arbitrary changes in these new intrinsic coordinates -
yielding physically distinguishable evolutions. Thus we have a
paradoxical situation where we are dealing with general coordinate
invariants, and yet we can meaningfully arbitrarilly alter the
intrinsic coordinate choices. Rovelli has referred to this phenomena
as involving evolving constants of the motion.
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Intrinsic coordinate gauge conditions

We choose intrinsic coordinates through the gauge conditions
✓µ = X

µ[gab, pab]. Given any solution trajectory in phase space we
can then determine the phase space dependent finite descriptors
⇠µ[gab, pab] := ⇠µ[y ] that will gauge transform these solutions to
those that satisfy the gauge conditions.
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The explicit construction of evolving constants of the
motion

This construction yields Taylor expansions in the coordinates ✓µ -
now themselves di↵eomorphism invariants. The coe�cients in the
Taylor expansions are functionals of gab and p

ab that are explicitly
di↵eomorphism invariants. This applies also to the invariant lapse
and shift.

I� =
1X

nµ=0

1

n0! n1! n2! n3!
(✓0)n0(✓1)n1(✓2)n2(✓3)n3 Cn0,n1,n2,n3 [gab, p

ab]
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Kuchar-inspired canonical transformations

Canonical transformations can in principle be carried out to new
canonical variables including X

µ and canonical conjugates ⇡µ - but
without imposing gauge conditions. The theory in terms of these
new variables is still fully di↵eomorphism covariant - with
corresponding Hamiltonian constraints. Each choice yields a new
form for the constraints and a new Hamilton-Jacobi equation with
a corresponding “natural” choice of temporal and spatial partial
variables - with the scalar constraint now expressed in terms of the
X

µ.

This “natural” choice is the one that results through the solutions
of the Hamilton-Jacobi equation.
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Free relativistic particle example

Choose as the intrinsic evolution parameter the proper time. This

corresponds to a canonical change of T = �m
q0

p0
, and our task is

to find the canonical generating function G (q0,T ) such that the
simplectic one-form contribution p0dq

0 becomes

PdT +
@G

@q0
dq

0 +
@G

@T
dT .

Having made the canonical change of variables, we of not yet
made a choice of an intrinsic time. The rewritten mass shell
constraint still generates arbitrary infinitesimal reparamtereizations

of the form ✓0 = ✓ �
�
�q̇

2
��1/2

⇠(✓). This change is in fact
generated by the transformed mass shell constraint, with the
generator taking the form

0 = ⇠ (P + ln(T )) +
1

2

�
p
a
pa +m

2
�
,
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Free relativistic particle example

The intrinsic Hamiltonian becomes H = 1
2

�
p
a
pa +m

2
�
.

Each reduced phase space comes equipped with a Hamiltonian
flow.
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I can now choose the proper time as the intrinsic evolution
parameter by making the gauge choice ✓ = T and eliminating its
momentum conjugate by solving for P . The result is that the
simplectic form becomes

dS =


�

1

2m

�
p
a
pa +m

2
�
+ ln(✓)

�
d✓ + padq

a.
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Figure: Proper time slicing in one spatial dimension of free particle gauge
orbits, where the proper time values are -0.5, 0, and .5. The particle
mass is taken to be one.
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An intrinsic H-J approach to GR

The symplectic one form is

dSGR =

Z
d
3
x

⇣
p̃
ab
dgab + P̃µdN

µ
⌘
� dt

Z
d
3
x (Nµ

Hµ + �µPµ)

Untertake a canonical change of variables to intrinsic coordinates
X

µ and their canonical conjugates. This will leave four
independent phase space variables gA and p

B , such that the
non-vanishing contribution to the one form becomes

Z
d
3✓

✓
⇡µd✓

µ + p
A
dgA +

�F

�gab
dgab +

�F

�gA
dgA +

�F

�Xµ
d✓µ

◆
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The intrinsic H-J equation

The Hamiltonian becomes a non-trivial functional of the intrinsic
coordinates ✓µ, the two independent components of the metric gA

and the two conjugate fields ⇡B . The corresponding
Hamilton-Jacobi equation will yield a complete solution
S [gA(✓a), ✓µ;⇧B(✓b)].
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Critique of Rovelli’s Hamilton-Jacobi proposal

[Rovelli, 2004] has proposed a Hamilton-Jacobi approach to general
relativity in which he also employed the free particle as an example.
His conclusion was that one could work with entire solution
trajectories which in the particle case are fixed by initial data. The
example I have exhibited shows that this data is not su�cient to
identify physically distinguishable solutions. Each choice of
intrinsic time actually yields a di↵erent Hamiltonian. And in the
generic case in general relativity this Hamiltonian will actually
possess its characteristic intrinsic time and space dependence.
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