Léon Rosenfeld's general theory of constrained Hamiltonian dynamics

Donald Salisbury

Austin College, USA Max Planck Institute for the History of Science, Berlin

APS March Meeting, New Orleans, March 13, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

Léon Rosenfeld, On the Quantization of Wave Fields, *European Journal of Physics H*, (2017), translation by D. Salisbury and K. Sundermeyer of Zur Quantelung der Wellenfelder, *Annalen der Physik*, **5**, 113 (1930)

Léon Rosenfeld's general theory of constrained Hamiltonian dynamics, *European Journal of Physics H*, (with K. Sundermeyer, 2017)

Rosenfeld education and early professional career

- Born 1904 in Charleroi, Belgium
- Completed graduate studies in Paris under the supervision of Louis de Broglie and Théophile de Donder, 1926
- Assistant to Max Born in Göttingen, 1928
- Sought research fellowship, with Einstein's support, to work with Einstein "on the relations between quantum mechanics and relativity"
- Fellowship not awarded and Rosenfeld was invited by Pauli to Zurich, 1929

ROSENFELD'S ACHIEVEMENTS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(1) Primary constraints from Lagrangian symmetries

Free electromagnetic field example. The flat space free electromagnetic field Lagrangian is

$$\mathcal{L}_{em}=-rac{1}{4}F_{\mu
u}F^{\mu
u}.$$

Symmetry transformation

$$\delta A_{\mu} = \xi_{,\mu}$$

There is a primary constraint expressing the vanishing of the coefficient of $\xi_{,00}$. It is $\frac{\partial \mathcal{L}_{em}}{\partial A_0} = p^0 = 0$.

(2) Gauge symmetries always involve singular Lagrangians

The Hessian matrix $\frac{\partial^2 \mathcal{L}_{em}}{\partial \dot{A}_{\alpha} \partial \dot{A}_0} = \frac{\partial p^0}{\partial \dot{A}_{\alpha}} = 0$ is singular.

This is a consequence of the invariance of the Lagrangian under the gauge transformation.

(3) Primary constraints lead to Hamiltonians with arbitrary functions

The canonical Hamiltonian is

$$\mathcal{H} = p^{\alpha} \dot{A}_{\alpha} - \mathcal{L}_{em}(A_{\mu,a}, \dot{A}_b(p^c, V_{,d})] = \frac{1}{2} \left(p^a p^a + B_b B_b \right) + p^a A_{0,a} + \lambda p^0,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where λ is an arbitrary spacetime function and $B_a = \epsilon_{abc} A_{b,c}$ is the magnetic field.

(4) Vanishing Noether charges expressed as phase space expression

The symmetry identity can be conveniently rewritten in terms of the Euler-Lagrange equations,

$$-\xi_{,\mu}\frac{\partial}{\partial x^{\nu}}\frac{\partial \mathcal{L}_{em}}{\partial A_{\mu,\nu}} + \left(\frac{\partial}{\partial x^{\nu}}\frac{\partial \mathcal{L}_{em}}{\partial A_{\mu,\nu}}\xi_{,\mu}\right)_{,\nu} \equiv 0.$$

We deduce that when the Euler-Lagrange equations are satisfied we have a conserved charge

$$\overline{\mathcal{M}}_{em} =: \int d^3x \left(p^0 \dot{\xi} - p^a_{,a} \xi \right),$$

(5) Phase space charges generate correct symmetry variations

The constraint $\overline{\mathcal{M}}_{em}$ generates the infinitesimal symmetry transformations

$$\delta A_{\mu} = \left\{ \delta A_{\mu}, \overline{\mathcal{M}}_{em} \right\} = \xi_{,\mu},$$

and $\delta p^a = 0$.

(6) Preservation of primary constraints leads to higher order constraints

The achievement (4) may be understood as a derivation of a higher order(secondary) constraint in the sense that if we write $\overline{\mathcal{M}} = \int d^3x \left(p^0 \dot{\xi} + \mathcal{N} \xi \right)$, then we have $\frac{d}{dt}\overline{\mathcal{M}} = \int d^3x \left(\dot{p}^0 \dot{x}i + p^0 \ddot{\xi} + \dot{\mathcal{N}} \xi + \mathcal{N} \dot{\xi} \right) = 0$. The vanishing of the coefficient of $\dot{\xi}$ then yields $\dot{p}^0 = -\mathcal{N} = 0$.

(日) (同) (三) (三) (三) (○) (○)

(7) How to construct the Hamiltonian for general relativity

As an example of a generally covariant model we consider the parameterized free relativistic particle. Let $x^{\mu}(\theta)$ represent the particle spacetime trajectory parameterized by θ . Under a reparameterization $\theta' = f(\theta)$, where f is an arbitrary positive definite function, x^{μ} transforms as a scalar,

$$x^{\prime\mu}(\theta^{\prime}) = x^{\mu}(\theta).$$

We introduce an auxiliary variable $N(\theta)$ and we assume that it transforms as a scalar density of weight one,

$$N'(heta') = N(heta) \left| rac{d heta}{d heta'}
ight|^1.$$

(日) (同) (三) (三) (三) (○) (○)

Then the particle Lagrangian takes the form

$$L_{
ho}(\dot{x}^{\mu},N)=rac{1}{2N}rac{dx^{\mu}}{d heta}rac{dx_{\mu}}{d heta}-rac{m^2N}{2},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\dot{x}^{\mu} := \frac{dx^{\mu}}{d\theta}$.

The conserved charge associated with the free relativistic particle is

$$egin{aligned} \mathcal{M}_{p} &= p_{\mu}\delta x^{\mu} + p_{N}\delta N - p_{\mu}\dot{x}^{\mu}\xi - p_{N}\dot{N}\xi + L_{p}\xi \ &= -p_{N}N\dot{\xi} - rac{N\xi}{2}\left(p^{2} + m^{2}
ight) - \lambda p_{N}\xi, \end{aligned}$$

where λ is an arbitrary spacetime function

This does generate the correct infinitesimal symmetry transformations.

It does not generate the correct finite transformations.

(7) The general relativistic Hamiltonian

$$\mathcal{H}_{g} = \mathcal{H}_{g}^{c} + \lambda_{I}\mathcal{F}^{I} + \lambda^{[IJ]}\mathcal{F}_{[IJ]}^{\prime}$$

with

$$\mathcal{H}_{g}^{c} = \frac{1}{2} S^{(ab)} M_{(ab)(cd)} S^{(cd)} - N^{(ab)} M_{(ab)(cd)} S^{(cd)} + \frac{1}{2} N^{(ab)} M_{(ab)(cd)} N^{(cd)} - \mathcal{A}$$

where

$$\mathcal{A} = \frac{1}{8\kappa} \left(-g \right)^{1/2} \left(4E_{M}^{[\alpha}g^{a][b}E_{N}^{\rho]} - 2E_{N}^{[a}g^{\alpha][\rho}E_{M}^{b]} - \eta_{MN}g^{\rho[\alpha}g^{a]b} \right) e_{\alpha,a}^{M}e_{\rho,b}^{\rho}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is the velocity-independent term in \mathcal{L}_{g} .

References I

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>