Ivor Robinson and the Trautmans: Gravitational Wave Pioneers

Donald Salisbury

Austin College, USA Max Planck Institute for the History of Science, Berlin

Ivor Robinson Memorial Symposium Dallas, May 7 - 9, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

Focus of this talk:

- Symmetry-based paths culminating in collaborative gravitational wave exploration by Andrzej Trautman and Ivor Robinson
- Relation to work by Leopold Infeld, Peter Bergmann, Joshua Goldberg, Felix Pirani, Hermann Bondi, Rainer Sachs, and Róża Michalska-Trautman

Robinson and Trautman

Ivor and Andrzej Trautman, Trieste, 1991

◆□ → ◆圖 → ◆園 → ◆園 → □ 園

Timelines

Ivor Robinson

- 1950 Cambridge Bachelor in Mathematics
- 1950 58 Lecturer University College Wales
- 1959 Visit Trautman in Warsaw
- 1959 60 University of North Carolina
- 1960 61 Syracuse University
- 1961 62 Cornell University
- 1962-63 Syracuse University
- 1963 Southwest Center for Advanced Study

Andrzej Trautman

- 1955 Masters in Engineering at Politechnika Warszawska
- 1957 Pirani visits Warsaw
- 1958 Trautman lectures at King's College, London
- 1959 Warsaw Ph. D. under Infeld
- 1959 60 University of North Carolina
- 1961 Spring and summer, Syracuse University
- 1964 Brandeis lectures with Pirani and Bondi
- 1967 Syracuse University

Robinson search for gravitational field of massless particle

Recounted in Neeman Festschrift [Robinson, 1985] and Robinson Festschrift [Rindler & Trautman, 1987].

Led first in 1955 to Einstein-Maxwell constant electromagnetic field, Bertotti-Robinson spacetime. Published in Poland in 1959 at Infeld's insistence [Robinson, 1959].

Next discovery was that the product 2-spaces he had been studying admitted a plane electromagnetic null wave - with associated geodetic null congruences, showing in 1956 that the congruences were also shear free.

(日) (同) (三) (三) (三) (○) (○)

Rediscovery of exact gravitational plane wave

1956 realization that null rotation symmetry method led to coordinate singularity-free gravitational plane wave. Reported same year at King's College and Cambridge - but not published. Bonnor refers to it [Bonnor, 1957]

Paper with Bondi and Pirani [Bondi *et al.*, 1959] generalizes from five parameter symmetry group of plane flat space electromagnetic waves to plane-fronted gravitational waves.

Exact plane waves were shown to be of Petrov type II.

1958 lectures based on series of publications in *Bulletin de l'Académie Polonaise des Science* now finally available in Golden Oldie Series, [Trautman, 2002]

Accomplishments

- Correct Sommerfeld boundary conditions for gravitational waves. Inspired by [Goldberg, 1955] higher order Einstein Infeld Hoffman (EIH) approximation
- Gravitational news function respecting Lichnerowicz continuity conditions

 Correct Trautman-Bondi mass loss fomula. See [Chrusciel et al., 1998]

Trautman symmetry and conservation laws

Recognition of general covariance symmetry origin of EIH derivation of equations of motion, with reference to [Bergmann, 1949] and [Goldberg, 1953]

Two routes to equations of motion available, with theoretical foundations thoroughly detailed in classic [Trautman, 1962], elements recognized in [Trautman, 1956b], [Trautman, 1956a], and [Trautman, 1957], based on strong conservation laws.

- Original EIH and Goldberg followup based on singular sources and metric dynamics.
- Covariantly conserved stress-energy, Einstein equations integrability conditions.

Trautman identified apparent failure of slow motion approximation in connecting to the gravitational wave zone.

Quotation from [Rindler & Trautman, 1987]: "During the 1960s and 70s, a systematic search for algebraically degenerate solutions of Einstein's equations produced remarkable results. Ivor's own initiative led to the discovery of a large class of gravitational fields with expanding, non-shearing geodesic rays."

- [Robinson & Trautman, 1960] and [Robinson & Trautman, 1962]. Exact spherical wave solutions
- Exact solutions exhibiting asymptotic "peeling off" behavior analyzed by Sachs, [Sachs, 1961] and [Sachs, 1962]

Róża Michalska-Trautman published post-humously with Infeld [Infeld & Michalska-Trautman, 1969] a calculation of gravitational back reaction.

Paper was cited by [Chandrasekhar & Esposito, 1970] as correctly anticipating their comprehensive post-Newtonian approximation scheme.

References I

Bergmann, Peter G. 1949. Non-linear field theories. *Physical Review*, **75**, 680 – 685.

Bondi, H., Pirani, F. A. E., & Robinson, I. 1959. Gravitational Waves in General Relativity. III. Exact Plane Waves.

Proceedings of the Royal Society of London, 251, 519–533.

II. Les ondes gravitationnelles en relativité générale. *Annales de l'Institut Henri Poincaré*, **15**, 146–157.

References II

- Chandrasekhar, Subrahmanyan, & Esposito, F. P. 1970.
 The 2 1/2-post-Newtonian equations of hydrodynamics and radiation reaction in general relativity.
 Astrophysical Journal, 160, 153–179.
- Chrusciel, Piotr T., Jezierski, Jacek, & MacCallum, Malcolm A. H. 1998.
 Uniqueness of the Trautman-Bondi mass. *Physical Review D*, 58, 084001–1–084001–16.
- 🔋 Goldberg, Joshua. 1953.

Strong Conservation Laws and Equations of Motion in Covariant Field Theories.

Physical Review, **89**(1), 263–272.

References III

- Goldberg, Joshua. 1955.
 Gravitational radiation.
 Physical Review, 99, 1873–1883.
- Infeld, L., & Michalska-Trautman, R. 1969.
 Radiation from systems in nearly periodic motion.
 Annals of Physics, 55, 576–586.
- Rindler, Wolfgang, & Trautman, Andrzej. 1987. Introduction.

Pages 9–19 of: Rindler, Wolfgang, & Trautman, Andrzej (eds), *Gravitation and Geometry: A Volume in Honour of I. Robinson.*

References IV

Robinson, I., & Trautman, A. 1962. Some Spherical Gravitational Waves in General Relativity. *Proceedings of the Royal Society of London*, **265**, 463–473.

Robinson, Ivor. 1959.
 A solution of the Maxwell-Einstein equations.
 Bulletin de l'Académie Polonaise des Science, 7(6), 351–352.

Robinson, Ivor. 1985.

On plane waves and nullicles.

Pages 409–422 of: Gotsman, Errol, & Tauber, Gerald (eds), From SU(3) to Gravity.

References V

Robinson, Ivor, & Trautman, A. 1960. Spherical gravitational waves. *Physical Review Letters*, 4, 431–432.

Sachs, R. 1961.

Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition.

Proceedings of the Royal Society of London, **264**, 309–338.

Sachs, R. K. 1962.

Gravitational Waves in General Relativity. VIII. Waves in Asymptotically Flat Space-Time.

Proceedings of the Royal Society of London, 270, 103–126.

References VI

Trautman, A. 1957.

On the conservation theorems and co-ordinate systems in general relativity.

Bulletin de l'Académie Polonaise des Science, 5(7), 721-727.

Trautman, Andrzej. 1956a.

Killing's equations and conservation laws.

Bulletin de l'Académie Polonaise des Science, **4**(10), 679–681.

On the conservation theorems and equations of motion in covariant field theories.

Bulletin de l'Académie Polonaise des Science, 4(10), 675–678.

References VII

Trautman, Andrzej. 1962.

Conservation laws in general relativity.

Pages 169–198 of: Witten, Louis (ed), Gravitation: an introduction to current research. John Wiley and Sons.

Trautman, Andrzej. 2002. Lectures on General Relativity. General Relativity and Gravitation, **34**(5), 721–762.