
Testing theories of quantum gravity in the early universe?

Gerald B. Cleaver

(EUCOS-CASPER, Physics, Baylor University)

Mathematical Physics and General Relativity Symposium
in Honor of Professor Ivor Robinson

University of Texas at Dallas
May 08, 2017



Collaborators:

Tao Zhu
(CASPER, BU & ZJUT)

Anzhong Wang
(CASPER, BU)

Klaus Kirsten
(Math, BU)

Qin Sheng
(Math, BU)

Qiang (Bob) Wu
(ZJUT)



Table of Contents
Motivations

Quantum Gravity (QG) needs observational evidences
Inflation is sensitive to QG
Era of Precision Cosmology

Uniform Asymptotic Approximation Method
Mathematic Challenge of the problem:

Observational accuracy currently is about 5%
Existing (analytic) methods are either not applicable
or yield large errors ≥ 20%

Uniform Asymptotic Approximation Method

The upper bounds of errors now are ≤ 0.15%

Detecting Effects of QG
Concluding Remarks



Based on:
Effects of pre-inflation dynamics and universalities of the
evolutions of the background and its perturbations in loop
quantum cosmology, in preparation (2017).

Universal features of quantum bounce in loop quantum
cosmology, arXiv:1607.06329.

High-order Primordial Perturbations with Quantum Gravitational
Effects, PRD93, 123525 (2016) [arXiv:1604.05739]

Inflationary spectra with inverse-volume corrections in loop
quantum cosmology and their observational constraints from
Planck 2015 data, JCAP 03 (2016) 046 [arXiv:1510.03855]

Scalar and tensor perturbations in loop quantum cosmology:
High-order corrections, JCAP 10 (2015) 052 [arXiv:1508.03239]

Detecting quantum gravitational effects of loop quantum
cosmology in the early universe?
ApJL 807 (2015) L17 [arXiv:1503.06761]



Based on (Cont.):

Power spectra and spectral indices of k-inflation: high-order
corrections, PRD90 (2014) 103517 [arXiv:1407.8011]

Quantum effects on power spectra and spectral indices with
higher-order corrections,
PRD90 (2014) 063503 [arXiv:1405.5301]

Inflationary cosmology with nonlinear dispersion relations,
PRD89 (2014) 043507 [arXiv:1308.5708]

Constructing analytical solutions of linear perturbations of
inflation with modified dispersion relations,
IJMPA29 (2014) 1450142 [arXiv:1308.1104]
Vector and tensor perturbations in Horava-Lifshitz cosmology,
PRD82 (2010) 124063 (2010) [arXiv:1008.3637]



Table of Contents

1 Motivations

2 Uniform Asymptotic Approximation Method

3 Detecting Effects of Quantum Gravity

4 Concluding Remarks



1.1 The need of Observational Evidences

Four forces in nature:
Electromagnetic, Weak, Strong︸ ︷︷ ︸ Gravitational︸ ︷︷ ︸

Standard Model ???
• String/M-Theory
• Loop Quantum Gravity
• Asymptotic Safety
• noncommutative Gravity
• Causal Dynamical
Triangulations

• Hořava-Lifshitz Gravity
• ...



1.1 The need of Observational Evidences (Cont.)

•Gravitational force is weak:

•Effects of Quantum Gravity
are expected to become important when:

∗ Energy ≃ 1015 TeV
∗ Size ≃ 10−35 m
∗ Time ≃ 10−44 s



1.1 The need of Observational Evidences (Cont.)

•Energy of LHC: 14 TeV
[
≪ 1015 TeV

]



1.1 The need of Observational Evidences (Cont.)

•Energy of Higgs Factory: 100 TeV[
≪ 1015 TeV

]



1.1 The need of Observational Evidences (Cont.)

•Energy of Inflation: 1013 TeV [
≲ 1015 TeV

]



1.2 Inflation is sensitive to QG

• Trans-Planckian Problem 1:
During inflation the wavelengths, related to present
observations, were exponentially stretched,

eNinf. =
aend
ai

To be consistent
with observations,
we need,

Ninf. ≥ 60

1Brandenberger & Martin, CGQ30 (2013) 113001]



1.2 Inflation is sensitive to QG

• Trans-Planckian Problem 2:
If

Ninf. > 72,

then,

ai = e−Ninf. · aend = a0 ·
(
aend
a0

)
e−Ninf.

< a0 · e−(72+60) < lPl ≡ 10−35m,

that is, the wavelengths corresponding to present
observations, should be smaller than the Planck length at
the beginning of the inflation, and quantum gravity
becomes important.

2Brandenberger & Martin, CGQ30 (2013) 113001]



1.2 Inflation is sensitive to QG (Cont.)

• Trans-Planckian Problem (Cont.):
Then, the assumption adopted in inflationary cosmology
that the spacetime is classical becomes questionable, and
quantum physics of gravity must be taken into account
— the trans-Planckian problem.



1.2 Inflation is sensitive to QG (Cont.)

• Initial singularity problem:
General relativity (GR) inevitably leads inflation to an initial
singularity 3, with which it is not clear how to impose the
initial conditions.

3A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. H.

Guth, and A. Vilenkin, PRL90 (2003) 151301.



1.2 Inflation is sensitive to QG (Cont.)

• Initial conditions problem:
Many inflationary scenarios only work if the fields are
initially very homogeneous and/or start with precise initial
positions and velocities.
Any physical understanding of this “fine-tuning” requires a
more complete formulation with ever-higher energies, such
as string theory.

• ...



1.2 Inflation is sensitive to QG (Cont.)

•Therefore:
Inflation is very sensitive to Planck-scale physics, and
effects of quantum gravity in the early universe are
important and need to be taken into account 4.

4D. Baumann, TASI Lectures on Inflation, arXiv:0907.5424

C.P. Burgess, M. Cicoli, F. Quevedo, JCAP 1311 (2013) 003

D. Baumann and L. McAllister, Inflation and String Theory

(Cambridge Monographs on Mathematical Physics, Cambridge

University Press, 2015)

E. Silverstein, TASI lectures on cosmological observables and

string theory, arXiv:1606.03640.



1.3 Era of Precision Cosmology

Inflation is remarkably successful and its predictions are
matched to observations with astonishing precision. 5

According to the inflation paradigm, the large-scale
structure of our universe and CMB all originated from
quantum fluctuations produced during Inflation, which can
be decomposed into:

Scalar, Vector, Tensor
But, because of the expansion of the
universe and particular nature of the
fluctuations, vector perturbations did
not grow, and observationally can be safely ignored:

vector perturbations ≃ 0

5Planck Collaboration, arXiv:1507.02704.



1.3 Era of Precision Cosmology(Cont.)

Scalar and tensor perturbations are described by mode
functions µk(η),

µ′′k +

(
ω2
k −
z′′

z

)
µk = 0, z ≡

{
aϕ′

H , scalar

a, tensor
(1)

ω2
k : energy of the mode, and in general relativity (GR) is

given by,
ω2
k = k

2

k: comoving wavenumber
ϕ: the scalar field — the inflaton; and ϕ′ ≡ dϕ/dη
η: the conform time, dη ≡ dt/a(t)
a(η): the expansion factor of the universe; and H ≡ a′/a



1.3 Era of Precision Cosmology(Cont.)

Power spectra, ∆2
i, are defined as,

∆2
i ≡

k3

2π2

∣∣∣µk
z

∣∣∣2
i
, (i = S, T).

(Planck2015, arXiv:arXiv:1502.02114)



1.3 Era of Precision Cosmology(Cont.)
Spectral indexes are defined as

ns ≡ 1 +
d ln∆2

s(k)

d ln k
, nT ≡

d ln∆2
T(k)

d ln k
.

The ratio r is defined
as,

r ≡
∆2
T

∆2
S

.

(Planck2015, arXiv:arXiv:1502.02114)



1.3 Era of Precision Cosmology(Cont.)

Since the first measurement of CMB in 1964 by Penzias
and Wilson (PW), there have been a variety of experiments
to measure its radiation anisotropies and polarization, such
as WMAP, PLanck and BICEP2, with ever increasing
precision.

PW, COBE, WMAP Planck BICEP2



1.3 Era of Precision Cosmology(Cont.)

In the coming decade, we anticipate that various new
surveys will make even more accurate CMB
measurements:

Balloon experiments: Balloon-borne Radiometers for Sky
Polarisation Observations (BaR-SPoRT); The E and B
Experiment (EBEX); ...

Ground experiments: Cosmology Large Angular Scale
Surveyor (CLASS); Millimeter-Wave Bolometric
Interferometer (MBI-B); Qubic; ...

Space experiments: Sky Polarization Observatory (SPOrt);
...



1.3 Era of Precision Cosmology(Cont.)

In addition to CMB measurements, Large-scale structure
surveys, measuring the galaxy power spectrum and the
position of the baryon acoustic peak, have provided
independently valuable information on the evolution of the
universe.
The first measurement of the
kind started with the baryon
acoustic oscillation (BAO)
in the SDSS LRG and
2dF Galaxy surveys 6.

6D.J. Eisenstein, et al., ApJ 633 (2005) 560; S. Cole, et al.,

MNRAS362 (2005) 505.



1.3 Era of Precision Cosmology(Cont.)

Since then, various
Iarge-scale structure
surveys have been
carried out 7, and
provided sharp
constraint on the
budgets that made
of the universe.

7Tegmark, M., et al. 2006, Phys. Rev. D,74, 123507; Kazin,
E. A., et al. 2010, ApJ, 710, 1444; Blake, C., Kazin, E.,
Beutler, F., et al. 2011, MNRAS, 418, 1707.



1.3 Era of Precision Cosmology(Cont.)

Various new surveys will make even more accurate
measurements of the galaxy power spectrum:

Ground-Based: the Prime Focus Spectrograph,
Big BOSS, ....
Space-based: Euclid, WFIRST, ....

Cosmology indeed enters its golden age:



1.3 Era of Precision Cosmology(Cont.)

In particular, the Stage IV experiments will measure the
physical variables ns and r with the accuracy8:

σ(ns, r) = 10−3 ∼ 10−4 (2)

8K.N. Abazajian et al., “Inflation physics from the cosmic
microwave background and large scale structure”, Astropart.
Phys. 63, 55 (2015) [arXiv:1309.5381]; arXiv:1610.02743.



1.3 Era of Precision Cosmology(Cont.)

With this level of uncertainty, the Stage IV experiments will
make a clear detection (> 5σ) of tensor modes from any
inflationary model with

r ≥ 0.01

Note that current measurements from Planck 2015 (Stage
II) [Planck Collaboration, arXiv:1502.02114] are,

ns = 0.968± 0.006,

r < 0.11 (95 % CL)



1.3 Era of Precision Cosmology(Cont.)

•Gravity Research Foundation:



1.3 Era of Precision Cosmology(Cont.)

•The 2012 First Award:



1.3 Era of Precision Cosmology(Cont.)

•The 2014 First Award:



1.3 Era of Precision Cosmology(Cont.)

•The 2014 First Award (Cont.):
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2.1 Mathematical Challenges of the Problem

The problem becomes very complicated after quantum
gravitational effects are taken into account.
Currently known methods, such as WKB and Green
functions, are either cannot apply to these cases or
produce very large errors 9, far above the accuracy
required by current observations 10.

9S.E. Joras and G. Marozzi, Phys. Rev. D79 (2009) 023514

A. Ashoorioon, D. Chialva and U. Danielsson, J. Cosmol. Astropart.

Phys. 06, 034 (2011).

10K.N. Abazajian et al., “Inflation physics from the cosmic

microwave background and large scale structure”, Astropart.

Phys. 63, 55 (2015) [arXiv:1309.5381]; arXiv:1610.02743.



2.1 Mathematical Challenges of the Problem (Cont.)



2.1 Mathematical Challenges of the Problem (Cont.)

• The main reason is that the WKB approximation condition
W≪ 1 is not always satisfied, where

W ≡

∣∣∣∣∣ 1

Ω2
k

[
3

4

(
Ω′
k

Ωk

)2

− 1

2

Ω′′
k

Ωk

]∣∣∣∣∣ , µ′′k +Ω2
kµk = 0.

• Example:

Ω2
k = k2

(
1− b̂1

k2

a2
+ b̂1

k4

a4

)
g ≡ −

(
1

4y2
+

Ω2
k

k2

)
b̂1, b̂2: constants Zhu et al, PRD93 (2016) 123525



2.1 Mathematical Challenges of the Problem (Cont.)

Zhu et al, PRD93 (2016) 123525



2.1 Mathematical Challenges of the Problem (Cont.)

Quantum gravitational effects are expected to be small.
So, theoretical calculations of physical observables with
high accuracy are highly demanded.



2.2 Quantum Gravitational Effects

String/M-Theory:
As the most promising candidate for a UV-completion of
the Standard Model that unifies gauge and gravitational
interaction in a consistent quantum theory, String/M theory
can provide possibilities for an explicit realization of the
inflationary scenario.
String/M theory usually leads to a non-trivial
time-dependent speed of sound for primordial
perturbations 11,

ω2
k = c

2
s(η)k

2, (3)

c2s(η): the speed of sound, and could be very close to zero
in the far UV regime.

11L. McAllister and E. Silverstein, Gen. Rel. Grav. 40, 565

(2007); C. P. Burgess, M. Cicoli, and F. Quevedo, arXiv: 1306.3512.



2.2 Quantum Gravitational Effects (Cont.)

Loop Quantum Cosmology:
Offers a natural framework to address the trans-Planckian
issue and initial singularity:

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρB

)
, ρB ≃ 0.41m4pl.

The universe starts to expand at ρ = ρB with

a(tB) > 0

— quantum bounce.



2.2 Quantum Gravitational Effects (Cont.)

There are mainly two different approaches to study
cosmological perturbations in LQC:

(A) Deformed Algebra
(B) Dressed Metric

In the framework of the deformed algebra approach, there
are mainly two kinds of quantum corrections 12:

A.1) holonomy
A.2) inverse-volume

12A. Barrau and J. Grain, arXiv:1410.1714; M. Bojowald, Rep. Prog.

Phys. 78 (2015) 023901; A. Ashtekar and A. Barrau, arXiv:1504.07559.



2.2 Quantum Gravitational Effects (Cont.)

Due to the holonomy corrections, the dispersion relation in
the mode functions is modified to

ω2
k =

(
1− 2

ρ

ρB

)
k2 (4)

Due to the inverse-volume corrections, the dispersion
relation in the mode functions is modified to

ω2
k = k

2 ×

{
1 +

[
σν0
3

(
σ
6 + 1

)
+ α0

2

(
5− σ

3

)]
δPL(η), scalar

1 + 2α0δPL, tensor
(5)

α0, ν0, σ: encode the specific features of the model
δPL(η): time-dependent, given by δPL = (aPL/a)

σ < 1, with
σ > 0.



2.2 Quantum Gravitational Effects (Cont.)

In the framework of the dressed metric approach 13, the
dispersion relation in the mode functions is modified to

ω2
k = k

2 − a
′′

a
+ U(η) (6)

where

U(η) =

{
a2

(
f2V(ϕ) + 2fV,ϕ(ϕ) + V,ϕϕ(ϕ)

)
, scalar

0, tensor
(7)

f ≡
√
24πGϕ̇/

√
ρ.

13A. Barrau and J. Grain, arXiv:1410.1714; M. Bojowald, Rep. Prog.

Phys. 78 (2015) 023901; A. Ashtekar and A. Barrau, arXiv:1504.07559.



2.2 Quantum Gravitational Effects (Cont.)
Horava-Lifshitz (HL) Gravity:

To quantize gravity using quantum field theory, in 2009
Horava proposed a theory - HL gravity 14, which is
power-counting renormalizable, and has attracted lot of
attention since then.
In this theory, the dispersion relation is modified to 15,

ω2
k(η) = k2 − b1

k4

a2M2∗
+ b2

k6

a4M4∗
(8)

M∗: the energy scale of the HL gravity
b1, b2: depend on the coupling constants of the HL theory
and the type of perturbations, scalar or tensor.

14P. Horava, PRD79 (2009) 084008

AW, Horava Gravity at a Lifshitz Point: A Progress Report,

Inter. J. Mod. Phys. D26 (2017) 1730014 [arXiv:1701.06087].

15AW and R. Maartens, PRD81 (2010) 024009; AW, PRD82 (2010) 124063.



2.3 Uniform Asymptotic Approximation Method

Taking the quantum effects into account, either from string/
M-Theory, or loop Quantum Cosmology, or HL gravity, or
any of other theories, the equation of motion for the mode
function µk in general can be cast in the form,

d2µk(y)

dy2
=

[
g(y) + q(y)

]
µk(y), (9)

g(y), q(y): functions of y[≡ −kη], to be determined by
minimizing the errors.
For example, in the HL gravity, we have

g(y) + q(y) =
ν2 − 1/4

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4,

with ϵ∗ ≡ H/M∗, z′′/z ≡ (ν2(η)− 1/4)/η2.



2.3 Uniform Asymptotic Approximation Method (Cont.)

The strategy is, following Olvier 16, to use the
well-established Liouville transformations to introduce

a new variable ξ, instead of y,
a new function U, instead of µk,

y→ ξ, µk(y) → U(ξ),

so that the resulted equation can be solved:
analytically order by order in terms of 1/λ≪ 1

the corresponding error bounds are minimized

16F.W.J. Olver, Asymptotics and Special functions, (AKP Classics,

Wellesley, MA 1997).



2.3 Uniform Asymptotic Approximation Method (Cont.)

The Liouville Transformations are

U(ξ) = χ1/4µk(y), χ ≡ ξ′2 =
|g(y)|
f(1)(ξ)2

,

f(ξ) =

∫ y√
|g(y)|dy, f(1)(ξ) =

df(ξ)

dξ
, (10)

χ must be regular and not vanish in the intervals of interest
f(1)(ξ) must be chosen so that it has zeros and
singularities of the same type as that of g(y)



2.3 Uniform Asymptotic Approximation Method (Cont.)

The equation of motion for the mode function reduces to,

d2U(ξ)

dξ2
=

[
±f(1)(ξ)2 + ψ(ξ)

]
U(ξ), (11)

with

ψ(ξ) =
q(y)

χ
− χ−3/4 d

2(χ−1/4)

dy2
, (12)

in the above “+” for g(y) > 0, and “−” for g(y) < 0.
Neglecting ψ(ξ) we obtain solutions to the first-order
approximation
Choosing properly f(1)(ξ) in order for the equation to be:
(a) solved analytically, and
(b) minimizing the error bounds.



2.3 Uniform Asymptotic Approximation Method (Cont.)

To illustrate our method, let us consider the case,

g(y) + q(y) ≡ −
Ω2
k

k−2
=
ν2 − 1/4

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4

Approximate solution near turning points g(y) = 0:
Assuming that y0 is a single zero of g(y) = 0, we can
choose

f(1)(ξ)2 = ±ξ,

so that

d2U(ξ)

dξ2
=

(
ξ + ψ(ξ)

)
U(ξ)



2.3 Uniform Asymptotic Approximation Method (Cont.)

Then, the first-order approximate solution,

U(ξ) = α0

(
Ai(λ2/3ξ) + ϵ

(1)
3

)
+ β0

(
Bi(λ2/3ξ) + ϵ

(1)
4

)
(13)

Ai(ξ), Bi(ξ): the Airy functions
ϵ
(1)
3 , ϵ

(1)
4 : the errors of the approximations

The upper bounds of errors are∣∣∣ϵ(1)3

∣∣∣
M(ξ)

,
|∂ϵ(1)3 /∂ξ|
N(ξ)

≤ E
−1(ξ)

λ

{
exp

(
λVξ,a3(H)

)
− 1

}
,∣∣∣ϵ(1)4

∣∣∣
M(ξ)

,
|∂ϵ(1)4 /∂ξ|
N(ξ)

≤ E(ξ)
λ

{
exp

(
λVa4,ξ(H)

)
− 1

}



2.3 Uniform Asymptotic Approximation Method (Cont.)

where the error control function H(y) defined as

H(ξ) =

∫ a3
ξ

|v|−1/2ψ(v)dv,

ψ(ξ) =
q(y)

χ
− χ−3/4 d

2(χ−1/4)

dy2

Minimizing the error control function and thew upper
bounds of errors requires the unique choice 17,

g(y) =
ν2

y2
− 1 + b1ϵ

2
∗y

2 − b2ϵ4∗y4,

q(y) = − 1

4y2
.

17Zhu, AW, Cleaver, Kirsten, Sheng, PRD89 (2014) 043507;

PRD93 (2016) 123525.



2.3 Uniform Asymptotic Approximation Method (Cont.)

Then, the approximate solution of U(ξ) up to the (2n)-th
order of the approximation:

U(λ, ξ) = α0

[
Ai(λ2/3ξ)

n∑
s=0

As(ξ)

λ2s

+
Ai′(λ2/3ξ)
λ4/3

n−1∑
s=0

Bs(ξ)

λ2s
+ ϵ

(2n+1)
3

]

+β0

[
Bi(λ2/3ξ)

n∑
s=0

As(ξ)

λ2s

+
Bi′(λ2/3ξ)
λ4/3

n−1∑
s=0

Bs(ξ)

λ2s
+ ϵ

(2n+1)
4

]
,

(14)



2.3 Uniform Asymptotic Approximation Method (Cont.)

where

A0(ξ) = 1,

Bs =
±1

2(±ξ)1/2

∫ ξ

0

{ψ(v)As(v)− A′′s (v)}
dv

(±v)1/2
,

As+1(ξ) = −1

2
B′s(ξ) +

1

2

∫
ψ(v)Bs(v)dv,

where ± correspond to ξ ≥ 0 and ξ ≤ 0, respectively.



2.3 Uniform Asymptotic Approximation Method (Cont.)

The upper bounds of the errors are:

ϵ
(2n+1)
3

M(λ2/3ξ)
,

∂ϵ
(2n+1)
3 /∂ξ

λ2/3N(λ2/3ξ)

≤ 2E−1(λ2/3ξ) exp
{2κ0Vα,ξ(|ξ1/2|B0)

λ

}
× Vα,ξ(|ξ1/2|Bn)

λ2n+1
,

ϵ
(2n+1)
4

M(λ2/3ξ)
,

∂ϵ
(2n+1)
4 /∂ξ

λ2/3N(λ2/3ξ)

≤ 2E(λ2/3ξ) exp
{2κ0Vξ,β(|ξ1/2|B0)

λ

}
× Vξ,β(|ξ1/2|Bn)

λ2n+1
. (15)



2.3 Uniform Asymptotic Approximation Method (Cont.)

We assume the universe was initially at the adiabatic
(Bunch-Davies) vacuum,

lim
y→+∞

µk(y) =
1√
2ω
e−i

∫
ωdη

≃
√
k

2

1

(−g)1/4
exp

(
−i

∫ y
yi

√
−gdy

)
.

Since the equation of the mode function is second-order,
we need one more condition to completely fix the free
parameters in the solutions. We choose the second one as
the Wronskian condition

µk(y)µ
∗
k(y)

′ − µ∗k(y)µk(y)
′ = i.



2.3 Uniform Asymptotic Approximation Method (Cont.)

Comparison of numerical (exact) solution with our
analytical approximate solution:
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Figure: The numerical (exact) (red solid curves) and analytical
(dotted curves) solutions with b1 = 3, b2 = 2, ν = 3/2, and
ϵ∗ = H/M∗ = 0.01.



2.3 Uniform Asymptotic Approximation Method (Cont.)

Up to the third-order approximations, the upper bounds of
errors are

≤ 0.15%
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3.1 Inflation With Quantum Gravitational Effects

High-order power spectra and spectral indices have been
calculated so far up to the second-order of the slow-roll
parameters ϵn in two cases:

(a) GR (ω2
k = k

2), first by using the Green function method
and later confirmed by the improved WKB method18,

(b) k-inflation (ω2
k = c

2
s(η)k

2), by using the uniform
approximation method but to the firs-order of (1/λ)19.

18J.-O. Gong and E.D. Stewart, PLB510 (2001) 1; S.M. Leach, A,

Liddle, J. Martin and D. Schwarz, PRD66 (2002) 023515; J.-O. Gong,

CQG21 (2004) 5555; R. Casadio, et al, PRD71 (2005) 043517; PLB625

(2005) 1.

19J. Martin, C. Ringeval and V. Vennin, JCAP06 (2013) 021.



3.1 Inflation With Quantum Gravitational Effects
(Cont.)

Applying our method to GR up to the second-order in terms
of the slow-roll parameters ϵn and the third-order in terms
of λ, we find that the resulted power spectra and spectral
indexes of both scalar and tensor perturbations are
consistent with the ones obtained by the Green function
and improved WKB methods20, within the allowed errors
[Zhu, AW, Cleaver, Kirsten, Sheng, PRD90 (2014) 063503].

20J.-O. Gong and E.D. Stewart, PLB510 (2001) 1; S.M. Leach, A,

Liddle, J. Martin and D. Schwarz, PRD66 (2002) 023515; J.-O. Gong,

CQG21 (2004) 5555; R. Casadio, et al, PRD71 (2005) 043517; PLB625

(2005) 1.



3.1 Inflation With Quantum Gravitational Effects
(Cont.)

Applying our method to k-inflation, we obtained the power
spectra, spectral indexes and runnings of both scalar and
tensor perturbations with the highest accuracy existing in
the literature so far 21.
Note that a large class of inflationary models belongs to
k-inflation 22.

21Zhu, AW, Cleaver, Kirsten, Sheng, PRD90 (2014) 103517

22J. Martin, C. Ringeval, and V. Vennin, Encyclopaedia

Inflationaris, Phys. Dark Univ. 5 (2014) 75 [arXiv:1303.3787].



3.2 Quantum Gravitational Effects in LQC

In LQC, the evolution of the background before reheating
can be divided into three different phases:

Bouncing, transition, slow-roll inflation

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical

0.1 100 105

-1.0
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1.0
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w
ϕ

Bouncing Slow-roll inflation
Transition

-ts tB ts ti tend

1

kB
2

0

Characteristic length λ2=a/a''

Zhu, AW, Cleaver, Kirsten, Sheng, arXiv:16107.06329



3.2 Quantum Gravitational Effects in LQC (Cont.)

If the quantum bounce is dominated by kinetic energy of
the inflaton, we found the evolution of the background is
universal 23

a(t) = aB
(
1 + γBt

2/t2Pl
)1/6

, (16)

γB ≡ 24πρc/m
4
Pl

tPl: the Planck time.
Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical
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23Zhu, AW, Cleaver, Kirsten, Sheng, arXiv:16107.06329



3.2 Quantum Gravitational Effects in LQC (Cont.)

The scalar and tensor perturbations are all universal and
independent of the slow-roll inflationary models in the
pre-inflationary phase
During the pre-inflationary phase, we find the mode
functions µk’s for the scalar and tensor perturbations
analytically

Solution with PT potential

Numerical solution

-1 0 1 2

0.26
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3.2 Quantum Gravitational Effects in LQC (Cont.)

Then, the Bogoliubov coefficients, αk, βk, at the onset of
the slow-roll inflation can be read off explicitly and given by

αk = Γ(a3)Γ(a3 − a1 − a2)/[Γ(a3 − a1)Γ(a3 − a2)],
βk = e

2ikηBΓ(a3)Γ(a1 + a2 − a3)/[Γ(a1)Γ(a2)],
a1 ≡ 1/2 +

√
α2 − 4V0/(2α)− ik/α,

a2 ≡ 1/2−
√
α2 − 4V0/(2α)− ik/α,

a3 ≡ 1− ik/α (17)

Since |βk|2 ̸= 0, particles are generically generated at the
onset of inflation.



3.2 Quantum Gravitational Effects in LQC (Cont.)

Note that in the standard inflationary scenario, the universe
is in a vacuum at the onset of inflation,∣∣∣αGRk ∣∣∣2 = 1,

∣∣∣αGRk ∣∣∣2 = 0

Oscillations always happen
in the power spectra, and their
phases for both scalar and
tensor perturbations are the
same, in contrast to other
theories of quantum gravity. � � �� �� ��
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3.3 Detecting Quantum Gravitational Effects in the
early Universe

The main idea:
In the Stage IV experiments, the accuracy of the
measurements of the quantities (ns, r) are 24,

σ(ns), σ(r) ≃ 10−3 ∼ 10−4

In GR, we have
Γ (ns, r) = 0. (18)

For example, for the potential V(ϕ) = λnϕ
n, we have

Γn(ns, r) = (ns − 1) +
(2 + n)r

8n
+

(3n2 + 18n− 4)(ns − 1)2

6(n+ 2)2
= 0

24K.N. Abazajian et al., Astropart. Phys. 63, 55 (2015); arXiv:

1610.02743.



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

Then, the accuracy of the measurements of the quantity
Γ (ns, r) is

σ [Γ (ns, r)] ≃ 10−3 ∼ 10−3

On the other hand, after quantum gravitational effects are
taken into account, Eq.(18) is modified to the form

Γn(ns, r) = FQG

Clearly, if
|FQG| ≳ 10−4

then, the Stage IV experiments is able to measure the
quantum gravitational corrections FQG.



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

In the framework of deformed algebra approach, for σ ≤ 1,
we found that 25,

|FQG| ≳ 10−3

That is, it is within the range of detections in the current
and forthcoming cosmological observations.

25Zhu, AW, Cleaver, Kirsten, Sheng, Wu, Astrophys. J. Lett.

807 (2015) L17; JCAP 10 (2015) 052; JCAP 03 (2016) 046.



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

It is remarkable to note that recently it was found that this
approach is already inconsistent with current observations
26, as it produces too large

rD.A. > 0.2

Current observations require 27,

rObs. < 0.12 (95%C.L.)

26B. Bolliet, A. Barrau, J. Grain, and S. Schander, Observational

Exclusion of a Consistent Quantum Cosmology Scenario, PRD 93 (2016)

124011 (2016).

27Planck Collaboration, P. A. R. Ade et al., Planck 2015 results.

XX. Constraints on inflation, arXiv:1502.02114.



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

Recently, we studied the problem in the framework of
dressed metric approach, by using the Planck 2015 data 28

with the MCMC code developed by us some years ago 29.
We vary the seven parameters,

Ωbh
2, Ωch

2, τ, Θs, ns, As,
kB
a0

by using the high-l CMB temperature power spectrum
(TT) and polarization data (TT, TE, EE) respectively with
the low-l polarization data (lowP) from Planck2015.

28Planck Collaboration, P. A. R. Ade et al., Planck 2015 results.

XX. Constraints on inflation, arXiv:1502.02114.

29Y.-G. Gong, Q. Wu, AW, Dark Energy and Cosmic Curvature: Monte

Carlo Markov Chain Approach, Astrophys. J. 681, 27 (2008).



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

In the following Table, we list the best fit values of the six
cosmological parameters and constraints on kB/a0 and r
at 95% C.L. (kB ≡

√
8πρB aB/mPl):

Zhu, AW, Cleaver, Kirsten, Sheng, arXiv:16107.06329



3.3 Detecting Quantum Gravitational Effects in the
early Universe (Cont.)

It is clear that the theory is consistent with observations,
provided that

kB
a0

< 3.14× 10−4Mpc−1(95%C.L.)

Taking ρB = 0.41m4Pl
30, we find that the above constraint

implies that

Ntot ≡ ln
a0
aB

> 132 (95%C.L.)

30I. Agullo, A. Ashtekar, and W. Nelson, Quantum Gravity Extension

of the Inflationary Scenario, PRL109 (2012) 251301.
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4. Concluding Remarks

To establish a proper theory of Quantum Gravity,
experimental evidences of their effects are highly
demanded.
Quantum gravitational effects in the early universe become
important and need to be taken into account
With the arrival of the era of precision cosmology, it
becomes possible to test different theories of quantum
gravity by cosmological observations
The uniform asymptotic approximation method is specially
designed for this purpose
To its third-order approximations, the upper bounds of
errors are

≲ 0.15%

which is sufficient for current and forthcoming observations



5. Conclusions (Cont.)
In LQC, the dressed metric approach is consistent with
current observations, provided that

kB
a0

< 3.14× 10−4Mpc−1(95%C.L.)

Right now, we are studying quantum gravitational effects
from other theories of gravity, including string/M-Theory 31

and Horava-Lifshitz gravity 32.

31D. Baumann and L. McAllister, Inflation and String Theory

(Cambridge Monographs on Mathematical Physics, Cambridge University

Press, 2015).

32AW, Horava Gravity at a Lifshitz Point: A Progress Report,

Inter. J. Mod. Phys. D26 (2017) 1730014 [arXiv:1701.06087].



Thank You!
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