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Space-Times of Constant Curvature

Rabed = K (8ac 8bd — 8ad 8bc) ; K = constant # 0
= Rab:_/\gab , N=3K
= Cabcd =0

= coordinates x? = (x, y, z, t) exist such that g,, = A\?7,, with
nap = diag(1,1,1,—1) and

A AN
<1+12T]bXX>

Note: cannot have a k, for which k,., = 0 if K # 0 since

0= ka;bc - ka;cb = ky Rdabc =K (kb 8ac — ke gab)
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Null Hyperplanes

@ A null hyperplane is a null hypersurface generated by null
geodesics which are shear-free and expansion-free

Given gap and k? such that g, k? kP =0; k? is geodesic and
shear-free if and only if there exists £, and ¢(x?) such that

kaib + Kba = &a kb + &b ka + 0 &ab
[I. Robinson and A. Trautman, J. Math. Phys. 24, 1425 (1983)]

k? expansion —free < k%,=0
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Null Hyperplanes

e Null, Geodesic, Shear-Free are conformally invariant properties

Given gap and k? such that g, k? kP =0; k? is geodesic and
shear-free if and only if there exists £, and ¢(x?) such that

kaib + Kba = &a kb + &b ka + 0 ab
[I. Robinson and A. Trautman, J. Math. Phys. 24, 1425 (1983)]

k? expansion —free < k%,=0
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Null Hyperplanes

@ All shear—free null hypersurfaces in Minkowskian space-time
are known [they are either null hyperplanes (Case 1) or null
cones (Case 2) or portions thereof]

Given gap and k? such that g, k? kP =0; k? is geodesic and
shear-free if and only if there exists £, and ¢(x?) such that

kab + Kba = &a kb + &b ka + 0 &ab
[I. Robinson and A. Trautman, J. Math. Phys. 24, 1425 (1983)]

k? expansion —free < k%,=0
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Minkowskian Space-Time

ds? = dx? + dy? + dz? — dt® = n,p dx? dx”

Shear-free null hypersurfaces are given by u(x, y, z, t) = constant
with u(x,y, z, t) defined implicitly by
Case 1 (Null Hyperplane):
Nap a®(u) xP + b(u) =0 with 127> =0
Case 2 (Null Cone):

Mab (x7 = w?(u)) (x" = wh(u)) = 0
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Case 1 (7ap)

Casel = wup= —fla, with f=b+ apxP

= u = constant are null

Upe = —f_l(éb Uc+acup) — FLf UpUc

= U, is geodesic and shear — free

N upe=2fn"apac =0

= U, is expansion — free
* k%
u = constant are confirmed as null hyperplanes in Minkowskian
space-time. What is the condition that they are null hyperplanes in
the space-time with metric g, = A\27,5?
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Case 1(g.0 = A\°nap)

The components of the Riemannian connection associated with
8ab = N’1]p are

[a)c = A_l()\7b (5? + )\,C 52 — nad Ayd 77bc)

A
Al=1+ ﬁ”ab x?xP and Aa= —/\2/\77‘9[7 Xb/6

= Upe=EptetEctp+ AT LU Mbe
with 1
Ep=—Fftay— A"\, - ffflfub

A
= P upe =22 N pac = §>\ fla,xP ng f~1b(uv)
(remember a.(u) x¢ + b(u) = 0)

Conclusion: The null hyperplanes u = constant in Minkowskian
space-time given by a.(u) x¢ + b(u) = 0 correspond to null
hyperplanes in the space-times of constant curvature if b(u) = 0.
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ac(u)x<=0

The null hyperplanes u = constant < ac(u)x = 0 intersect
each other. Only the direction of a“ is significant and is
determined by an arbitrary complex-valued function /(u) with
complex conjugate /(u) via

al +ia® =2V2I(u) , & +a* =41(u)T(v) , a° —a* = -2
Now

ac()x*=0 & z4+t=V21(u) (x+iy) +V2I(u) (x — iy)
+2/1(u) I(u) (z = t)

= Napx*xP =[x+ iy + V2 I(u) (z - t)

Temptation! Define

2

(=

é(x +iy) + I(u) (z — t)

and use ¢,C, u, z — t as coordinates satisfying
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X+iy =vV2¢—V2I(u)(z—1t),
z+t=2{I(u) ¢+ I(u) C} = 2/(u) I(u) (z — 1) ,
A‘l=1%~Aﬂwxaxb=14f%C5=f)@%0

12
=

ds? = N2n.p dx? dx? = 2p72d¢dC + 2 p2du x ¥
with the 1-form
Y =—(z=t)(BdC+FdC) + (B + FC)(dz — dt) + 8 5z — t)*du
where 5(u) = dl(u)/du. Define
q=0C+ B¢
and in place of z — t a new coordinate r by
z—t=qr
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ac(u)x<=0

The line element takes the Ozsvith-Robinson-Rézga [J. Math.
Phys. 26, 1755 (1985)] form

ds®> =2p 2d( dC + 2 p2qPdu{dr + (¢ Yqr + B3 r*)du}
with A o
1R g =4
where G(u) = dl(u)/du.

Observation: This de Sitter (if A > 0) or anti de Sitter (if A < 0)
line element is expressed in a coordinate system based on a family
u = constant of null hyperplanes. It contains two arbitrary
real-valued functions of u (the real and imaginary parts of 3(u))
and we know the geometrical origin of them!
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ab (x° = w2 () (° — wh(u)) =0 = u,=L2

po=x—wi(u), R=mnpi(u)p’ (= Wwou,=+1)

confirming that u = constant are null hypersurfaces

12 =02—w’up and Rp=wp+Aup (A= —iv, w+R i)

=
1 . .
Uap = E(nab —Walp — Wp Uy — A ua U,b)

confirming that u , is geodesic and shear-free with expansion
n?Puap/2=1/R+#0
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Case 2 (gap = \21.p)

In the space-time of constant curvature
-1 -1
Uab=EUp+Eua+ (R 4+ X g AcUg) Nab

with 1
éa - _Rilwa + )\71A7a - EA R71U7a

confirming that u , is geodesic and shear-free. u , is expansion—free
if

12
NPuap=0 & RN Aup=0 & napw?(u) wh(u) = N

Given A we see that w?(u) has three independent components
which can be parametrized with a real-valued function m(u) and a
complex-valued function /(u) and its complex conjugate /(u) as:
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Nab X2 XP — 21,5 x? wP(u) = 12/A

We assume m(u) # 0 but for small m(u) the equation above for
u = constant approximates a(u) x? = 0 with

al +ia> =2V21I(u), 8 +a* =41(u)1(u) , & —a* = -2

The equation above for u = constant reads:

24+t = V2T(u)(x + iy) + V2 I(u)(x — iy) + 2 1(u) T(u)(z — t)

+2m(u) <1 + %m(u) (z— t)) - % m(u) 7. X2 xP
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Nab X2 X2 — 21,5 x2 wP(u) = 12/A

=

1 3 XE = (1+Qm( )(z—t))l iy +V2I) (2~ 1)

+2m(u)(z—t)

With A1 =1 + Ap.p x? xP we now calculate
27

(1+ 5 mu)-0) At - (1+2m()(z—r))2

+% X+ iy + V2 (u )(z—t)‘z

Temptation! Define
-1
¢ = (1 + % m(u) (z — t)) {%(X +iy)+ (u)(z - t)}
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Nab X2 X2 — 21,5 x2 wP(u) = 12/A

=

P <1+2m(u)(2—t)> p with p:1+%CC_

Use ¢,C, u,z — t as coordinates with

x+iy =v2¢ <1+/6\m(u)(z—t)> —V2I(u)(z—1t)

and

z+t =2 {7(u)c+ I(u) ¢ + m(u) <1 - 2(5) } <1 - %m(u) (z - t))

_ (2 m?(u) + 2 1(v) 7(u)> (z—1)
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Nab X2 X2 — 21,5 x2 wP(u) = 12/A

Introducing a coordinate r via

z—t= <1+/6\m(u)(z—t)>qr

with

a(¢.C.w) = 50) T+ )¢+ o) (1- 50

[8(u) = dI(u)/du, a(u) = dm(u)/du] The line element in
coordinates (, (, r, u reads

_ 1
ds? = X2, dx? dx? = 2 p~2d¢ dC+2 p~ 2% du{dr+(q ¢ r+5k r?)du}
with

5= 5 0?(u) +2(u) A(u)
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Observation:

We have arrived at the general Ozsvath-Robinson-Rézga form of
the de Sitter (if A > 0) or anti de Sitter (if A < 0) line element
expressed in a coordinate system based on a family u = constant
of null hyperplanes. It contains three arbitrary real-valued
functions of u (a(u) and the real and imaginary parts of 3(u)) and
we know the geometrical origin of them!

Question:

What is the geometrical role of the functions a(u) and 3(u) in the
space-times of non-zero constant curvature?
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Intersecting Null Hyperplanes

When viewed in Minkowskian space-time the null hyperplanes
ap(u)xP=0

intersect. When viewed in Minkowskian space-time the null
hyperplanes
Nab X* xP = 2025 x° wP(u) = 12/A

are null cones with vertices on the world line x? = w?(u) with

12
Nab w?(u) Wb(U) = N

The null cones intersect if the word line is space-like or time-like.
They also intersect if the world line is null except when it is a
common generator of the null cones.
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Intersecting Null Hyperplanes

With w?(u) given in terms of /(u), m(u) and A we find that
o 6 \* . A :
Nab W Wb:</\m> Kk with /{:§a2+2ﬁﬂ
For x = w?(u) a null geodesic we must have
k=0 and w?= C(u)w?

for some C(u). The information we can extract from these
equations is encapsulated in:

k=0

and

;Zf:%zf = Ref =0or Img =0 or Ref = ¢gImp

for some real number ¢.
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Robinson-Tran Theorem

(I) A>0 = k>0 = intersecting null hyperplanes

(2)A<0 = k>0o0r k <0or k=0 with
(i) kK > 0 = intersecting null hyperplanes
(i) Kk < 0 = intersecting null hyperplanes

(iii) Kk =0 = intersecting null hyperplanes except when
ReB =0 or Imf =0 or Ref = ¢g Impg3

I. Robinson, University of Texas at Dallas Internal Report (1983);
H. V. Tran, Ph.D. thesis, University of Texas at Dallas (1988).
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Gravitational Waves with A £ 0

Andrzej Trautman:

“Gravitational waves are usually defined by their geometric
properties. There is another important property of such waves,
both linear and gravitational: waves can propagate information.
This means that wave-like solutions depend on arbitrary functions,
the shape of which contains the information carried by the wave”
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Gravitational Waves with A £ 0

Following Trautman's example we modify the de Sitter or anti-de
Sitter line elements above to read:

_ 1 _
ds?> =2p2d¢ dC+2 p*2q2du{dr+(q71q r—i—E K r2+F(C, ¢,u))du}
with F arbitrary in u. Putting F = pg H((,(, u) we have

A
R, = —A = Hsr+-p?H=0
ab 8ab CC+3P

The only non-vanishing null tetrad component of the Weyl tensor is

0 0 _ _
Cabed I°mP 1°m? = pzqzai_ <q26€.(pq 1H)> , kadx® =p'qdu

We have here the Ozsvath-Robinson-Rézga plane-fronted
gravitational waves with A #£ 0
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