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Space-Times of Constant Curvature

Rabcd = K (gac gbd − gad gbc) , K = constant 6= 0

⇒ Rab = −Λ gab , Λ = 3 K

⇒ Cabcd = 0

⇒ coordinates xa = (x , y , z , t) exist such that gab = λ2ηab with
ηab = diag(1, 1, 1,−1) and

λ =

(
1 +

Λ

12
ηab xa xb

)−1

———————————————
Note: cannot have a ka for which ka;b = 0 if K 6= 0 since

0 = ka;bc − ka;cb = kd Rd
abc = K (kb gac − kc gab)
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Null Hyperplanes

A null hyperplane is a null hypersurface generated by null
geodesics which are shear-free and expansion-free

Null, Geodesic, Shear-Free are conformally invariant properties

All shear–free null hypersurfaces in Minkowskian space-time
are known [they are either null hyperplanes (Case 1) or null
cones (Case 2) or portions thereof]

—————————–
Given gab and ka such that gab ka kb = 0; ka is geodesic and
shear-free if and only if there exists ξa and ϕ(xa) such that

ka;b + kb;a = ξa kb + ξb ka + ϕ gab

[I. Robinson and A. Trautman, J. Math. Phys. 24, 1425 (1983)]

ka expansion− free ⇔ ka
;a = 0
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Minkowskian Space-Time

ds2 = dx2 + dy2 + dz2 − dt2 = ηab dxa dxb

Shear-free null hypersurfaces are given by u(x , y , z , t) = constant
with u(x , y , z , t) defined implicitly by

Case 1 (Null Hyperplane):

ηab aa(u) xb + b(u) = 0 with ηab aa ab = 0

Case 2 (Null Cone):

ηab (xa − wa(u)) (xb − wb(u)) = 0
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Case 1 (ηab)

Case 1 ⇒ u,b = −f −1ab with f = ḃ + ȧb xb

⇒ u = constant are null
———————————————

u,b,c = −f −1(ȧb u,c + ȧc u,b)− f −1ḟ u,b u,c

⇒ u,a is geodesic and shear− free
———————————————

ηbc u,b,c = 2 f −2ηbc ȧb ac = 0

⇒ u,a is expansion− free
* * *

u = constant are confirmed as null hyperplanes in Minkowskian
space-time. What is the condition that they are null hyperplanes in
the space-time with metric gab = λ2ηab?

Peter Hogan Null Hypersurfaces in Space-Times of Constant Curvature



Case 1(gab = λ2ηab)

The components of the Riemannian connection associated with
gab = λ2ηab are

Γa
bc = λ−1(λ,b δ

a
c + λ,c δ

a
b − ηad λ,d ηbc)

λ−1 = 1 +
Λ

12
ηab xa xb and λ,a = −λ2Λ ηab xb/6

⇒ u,b;c = ξb u,c + ξc u,b + λ−1ηad λ,a u,d ηbc

with

ξb = −f −1ȧb − λ−1λ,b −
1

2
f −1ḟ u,b

⇒ ηbc u,b;c = −2λ−1f −1ηbc λ,b ac =
Λ

3
λ f −1ab xb = −Λ

3
λ f −1b(u)

(remember ac(u) xc + b(u) = 0)
————————————————–

Conclusion: The null hyperplanes u = constant in Minkowskian
space-time given by ac(u) xc + b(u) = 0 correspond to null
hyperplanes in the space-times of constant curvature if b(u) = 0.
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ac(u) xc = 0

The null hyperplanes u = constant ⇔ ac(u) xc = 0 intersect
each other. Only the direction of ac is significant and is
determined by an arbitrary complex-valued function l(u) with
complex conjugate l̄(u) via

a1 + ia2 = 2
√

2 l(u) , a3 + a4 = 4 l(u) l̄(u) , a3 − a4 = −2

Now

ac(u) xc = 0 ⇔ z + t =
√

2 l̄(u) (x + iy) +
√

2 l(u) (x − iy)

+2 l(u) l̄(u) (z − t)

⇒ ηab xa xb =
∣∣∣x + iy +

√
2 l(u) (z − t)

∣∣∣2

Temptation! Define

ζ =
1√
2

(x + iy) + l(u) (z − t)

and use ζ, ζ̄, u, z − t as coordinates satisfying
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ac(u) xc = 0

x + iy =
√

2 ζ −
√

2 l(u) (z − t) ,

z + t = 2{̄l(u) ζ + l(u) ζ̄} − 2 l(u) l̄(u) (z − t) ,

λ−1 = 1 +
Λ

12
ηab xa xb = 1 +

Λ

6
ζ ζ̄ = p (say)

⇒
ds2 = λ2ηab dxa dxb = 2 p−2dζ d ζ̄ + 2 p−2du × Σ

with the 1-form

Σ = −(z − t)(β d ζ̄ + β̄ dζ) + (β ζ̄ + β̄ ζ)(dz − dt) + β β̄(z − t)2du

where β(u) = dl(u)/du. Define

q = β ζ̄ + β̄ ζ

and in place of z − t a new coordinate r by

z − t = q r
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ac(u) xc = 0

The line element takes the Ozsváth-Robinson-Rózga [J. Math.
Phys. 26, 1755 (1985)] form

ds2 = 2 p−2dζ d ζ̄ + 2 p−2q2du{dr + (q−1q̇ r + β β̄ r2)du}

with

p = 1 +
Λ

6
ζ ζ̄ , q = β ζ̄ + β̄ ζ , q̇ =

∂q

∂u

where β(u) = dl(u)/du.
—————————————————————-

Observation: This de Sitter (if Λ > 0) or anti de Sitter (if Λ < 0)
line element is expressed in a coordinate system based on a family
u = constant of null hyperplanes. It contains two arbitrary
real-valued functions of u (the real and imaginary parts of β(u))
and we know the geometrical origin of them!
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Case 2 (ηab)

ηab (xa − wa(u))(xb − wb(u)) = 0 ⇒ u,a =
µa

R

µa = xa − wa(u) , R = ηab ẇa(u)µb (⇒ ẇa u,a = +1)

confirming that u = constant are null hypersurfaces
——————————————————

µa
,b = δab−ẇa u,b and R,b = ẇb+A u,b (A = −ẇa ẇa+R ẅa u,a)

⇒
u,ab =

1

R
(ηab − ẇa u,b − ẇb u,a − A u,a u,b)

confirming that u,a is geodesic and shear-free with expansion
ηab u,ab/2 = 1/R 6= 0
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Case 2 (gab = λ2ηab)

In the space-time of constant curvature

u,a;b = ξa u,b + ξb u,a + (R−1 + λ−1ηcd λ,c u,d) ηab

with

ξa = −R−1ẇa + λ−1λ,a −
1

2
A R−1u,a

confirming that u,a is geodesic and shear-free. u,a is expansion–free
if

ηabu,a;b = 0 ⇔ R−1+λ−1ηab λ,a u,b = 0 ⇔ ηab wa(u) wb(u) = −12

Λ

————————————————
Given Λ we see that wa(u) has three independent components
which can be parametrized with a real-valued function m(u) and a
complex-valued function l(u) and its complex conjugate l̄(u) as:
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ηab xa xb − 2 ηab xa w b(u) = 12/Λ

w1+iw2 =
6
√

2 l(u)

Λ m(u)
, w3+w4 =

6

Λ m(u)

(
1

3
Λ m2(u) + 2 l(u) l̄(u)

)
,

w3 − w4 = − 6

Λ m(u)
———————————————————————

We assume m(u) 6= 0 but for small m(u) the equation above for
u = constant approximates ab(u) xb = 0 with

a1 + ia2 = 2
√

2 l(u) , a3 + a4 = 4 l(u) l̄(u) , a3 − a4 = −2

—————————————————————–
The equation above for u = constant reads:

z + t =
√

2 l̄(u)(x + iy) +
√

2 l(u)(x − iy) + 2 l(u) l̄(u)(z − t)

+2 m(u)

(
1 +

Λ

6
m(u) (z − t)

)
− Λ

6
m(u) ηab xa xb
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ηab xa xb − 2 ηab xa w b(u) = 12/Λ

⇒

ηab xa xb =

(
1 +

Λ

6
m(u) (z − t)

)−1 ∣∣∣x + iy +
√

2 l(u) (z − t)
∣∣∣2

+2 m(u) (z − t)

With λ−1 = 1 + Λ
12ηab xa xb we now calculate(

1 +
Λ

6
m(u) (z − t)

)
λ−1 =

(
1 +

Λ

6
m(u) (z − t)

)2

+
Λ

12

∣∣∣x + iy +
√

2 l(u) (z − t)
∣∣∣2

Temptation! Define

ζ =

(
1 +

Λ

6
m(u) (z − t)

)−1 {
1√
2

(x + iy) + l(u) (z − t)

}
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ηab xa xb − 2 ηab xa w b(u) = 12/Λ

⇒

λ−1 =

(
1 +

Λ

6
m(u) (z − t)

)
p with p = 1 +

Λ

6
ζ ζ̄

Use ζ, ζ̄, u, z − t as coordinates with

x + iy =
√

2 ζ

(
1 +

Λ

6
m(u) (z − t)

)
−
√

2 l(u) (z − t)

and

z+t = 2

{
l̄(u) ζ + l(u) ζ̄ + m(u)

(
1− Λ

6
ζ ζ̄

)} (
1 +

Λ

6
m(u) (z − t)

)

−
(

Λ

3
m2(u) + 2 l(u) l̄(u)

)
(z − t)
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ηab xa xb − 2 ηab xa w b(u) = 12/Λ

Introducing a coordinate r via

z − t =

(
1 +

Λ

6
m(u) (z − t)

)
q r

with

q(ζ, ζ̄, u) = β(u) ζ̄ + β̄(u) ζ + α(u)

(
1− Λ

6
ζζ̄

)
[β(u) = dl(u)/du, α(u) = dm(u)/du] The line element in
coordinates ζ, ζ̄, r , u reads

ds2 = λ2ηab dxa dxb = 2 p−2dζ d ζ̄+2 p−2q2du{dr+(q−1q̇ r+
1

2
κ r2)du}

with

κ =
Λ

3
α2(u) + 2β(u) β̄(u)
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gab = λ2ηab

Observation:

We have arrived at the general Ozsváth-Robinson-Rózga form of
the de Sitter (if Λ > 0) or anti de Sitter (if Λ < 0) line element
expressed in a coordinate system based on a family u = constant
of null hyperplanes. It contains three arbitrary real-valued
functions of u (α(u) and the real and imaginary parts of β(u)) and
we know the geometrical origin of them!

Question:

What is the geometrical role of the functions α(u) and β(u) in the
space-times of non-zero constant curvature?
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Intersecting Null Hyperplanes

When viewed in Minkowskian space-time the null hyperplanes

ab(u) xb = 0

intersect. When viewed in Minkowskian space-time the null
hyperplanes

ηab xa xb − 2 ηab xa wb(u) = 12/Λ

are null cones with vertices on the world line xa = wa(u) with

ηab wa(u) wb(u) = −12

Λ

The null cones intersect if the word line is space-like or time-like.
They also intersect if the world line is null except when it is a
common generator of the null cones.
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Intersecting Null Hyperplanes

With wa(u) given in terms of l(u),m(u) and Λ we find that

ηab ẇa ẇb =

(
6

Λ m

)2

κ with κ =
Λ

3
α2 + 2β β̄

For xa = wa(u) a null geodesic we must have

κ = 0 and ẅa = C (u) ẇa

for some C (u). The information we can extract from these
equations is encapsulated in:

κ = 0

and

1

β

dβ

du
=

1

β̄

d β̄

du
⇒ Reβ = 0 or Imβ = 0 or Reβ = c0 Imβ

for some real number c0.
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Robinson-Tran Theorem

(1) Λ > 0 ⇒ κ > 0 ⇒ intersecting null hyperplanes

(2) Λ < 0 ⇒ κ > 0 or κ < 0 or κ = 0 with

(i) κ > 0 ⇒ intersecting null hyperplanes

(ii) κ < 0 ⇒ intersecting null hyperplanes

(iii) κ = 0 ⇒ intersecting null hyperplanes except when
Reβ = 0 or Imβ = 0 or Reβ = c0 Imβ

——————————————————–
I. Robinson, University of Texas at Dallas Internal Report (1983);
H. V. Tran, Ph.D. thesis, University of Texas at Dallas (1988).
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Gravitational Waves with Λ 6= 0

Andrzej Trautman:

“Gravitational waves are usually defined by their geometric
properties. There is another important property of such waves,
both linear and gravitational: waves can propagate information.
This means that wave-like solutions depend on arbitrary functions,
the shape of which contains the information carried by the wave”
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Gravitational Waves with Λ 6= 0

Following Trautman’s example we modify the de Sitter or anti-de
Sitter line elements above to read:

ds2 = 2 p−2dζ d ζ̄+2 p−2q2du{dr+(q−1q̇ r+
1

2
κ r2+F (ζ, ζ̄, u))du}

with F arbitrary in u. Putting F = p q−1H(ζ, ζ̄, u) we have

Rab = −Λ gab ⇒ Hζζ̄ +
Λ

3
p−2H = 0

The only non-vanishing null tetrad component of the Weyl tensor is

Cabcd la mb lc md = p2q2 ∂

∂ζ

(
q2 ∂

∂ζ
(p q−1H)

)
, ka dxa = p−1q du

We have here the Ozsváth-Robinson-Rózga plane-fronted
gravitational waves with Λ 6= 0
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