Problems and techniques in low-dimensional topology; or, how I became a knot theorist Mathematical physics and general relativity symposium in honor of Professor Ivor Robinson, May 7-9 2017

Peter Ozsváth

May 9, 2017

4-manifold topology

The theory of topological 4-manifolds up to homeomorphism was revoltionized by the work of Michael Freedman in the 1980's. A corollary of this work is the solution to the topological 4-dimensional Poincaré conjecture:

4-manifold topology

The theory of topological 4-manifolds up to homeomorphism was revoltionized by the work of Michael Freedman in the 1980's. A corollary of this work is the solution to the topological 4-dimensional Poincaré conjecture:

Theorem (M. Freedman) If X is a compact, four-dimensional manifold with the property that ever loop can be contracted to a point and every sphere can be contracted to a point, then X is homeomorphic to S^4 .

4-manifold topology

The theory of topological 4-manifolds up to homeomorphism was revoltionized by the work of Michael Freedman in the 1980's. A corollary of this work is the solution to the topological 4-dimensional Poincaré conjecture:

Theorem (M. Freedman) If X is a compact, four-dimensional manifold with the property that ever loop can be contracted to a point and every sphere can be contracted to a point, then X is homeomorphic to S^4 .

Freedman imported the theory of higher-dimensional manifolds to the study of 4-manifolds up to homeomorphism, combining aspects of Bing's point set perspective with the algebraic topology, especially "surgery theory" pioneered by Bill Browder.

What is the difference between 4-manifolds up to homeomorphism and 4-manifolds up to diffeomorphism?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is the difference between 4-manifolds up to homeomorphism and 4-manifolds up to diffeomorphism? This question was pioneered by Simon Donaldson in the late 1980's. Started by showing that there are many topological 4-manifolds with no differentiable structure.

What is the difference between 4-manifolds up to homeomorphism and 4-manifolds up to diffeomorphism? This question was pioneered by Simon Donaldson in the late 1980's. Started by showing that there are many topological 4-manifolds with no differentiable structure.

Idea: study the solution space to the **anti-self-dual Yang-Mills** equations.

What is the difference between 4-manifolds up to homeomorphism and 4-manifolds up to diffeomorphism? This question was pioneered by Simon Donaldson in the late 1980's. Started by showing that there are many topological 4-manifolds with no differentiable structure.

Idea: study the solution space to the **anti-self-dual Yang-Mills equations**. Topological properties of this solution space to a non-linear elliptic partial differential equation (depending on a choice of Riemannian metric!) can be used to explore differential topology of the underlying space.

A striking 4-dimensional phenomenon

There is a 4-manifold X that is homeomorphic but not diffeomorphic to \mathbb{R}^4 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A striking 4-dimensional phenomenon

There is a 4-manifold X that is homeomorphic but not diffeomorphic to \mathbb{R}^4 . This does not occur in dimensions \mathbb{R}^n for $n \neq 4$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

There is a 4-manifold X that is homeomorphic but not diffeomorphic to \mathbb{R}^4 . This does not occur in dimensions \mathbb{R}^n for $n \neq 4$.

The existence follows from a combination of Freedman's and Donaldson's theories. In fact, Clifford Taubes showed that there are uncountably many such manifolds. I will sketch the construction of one. This description will hinge on *knot theory*.

Studying knots

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

An *unknotting sequence* is a sequence of crossing changes, which ends in the "unknot".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An *unknotting sequence* is a sequence of crossing changes, which ends in the "unknot".

The unknotting number is the minimal length of any unknotting sequence.

An *unknotting sequence* is a sequence of crossing changes, which ends in the "unknot".

The unknotting number is the minimal length of any unknotting sequence.

u(K) = 0 if and only if K = the unknot.

An *unknotting sequence* is a sequence of crossing changes, which ends in the "unknot".

The unknotting number is the minimal length of any unknotting sequence.

u(K) = 0 if and only if K = the unknot.

CONJECTURE $u(K_1 \# K_2) = u(K_1) + u(K_2)$

In the 1970's John Milnor conjectured that

$$u(T_{p,q}) = \frac{(p-1)(q-1)}{2}.$$

In the 1970's John Milnor conjectured that

$$u(T_{p,q}) = \frac{(p-1)(q-1)}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This was proved by Peter Kronheimer and Tomasz Mrowka in 1991, using Donaldson theory.

In the 1970's John Milnor conjectured that

$$u(T_{p,q}) = \frac{(p-1)(q-1)}{2}.$$

This was proved by Peter Kronheimer and Tomasz Mrowka in 1991, using Donaldson theory.

There were many reproofs of this since; I will sketch one here a little later.

In the 1970's John Milnor conjectured that

$$u(T_{p,q}) = \frac{(p-1)(q-1)}{2}.$$

This was proved by Peter Kronheimer and Tomasz Mrowka in 1991, using Donaldson theory.

There were many reproofs of this since; I will sketch one here a little later. But first, let's discuss some other knot invariants.

It is a theorem of Seifert that any knot can be realized as the boundary of an embedded, oriented surface in \mathbb{R}^3 , called a *Seifert surface*.

It is a theorem of Seifert that any knot can be realized as the boundary of an embedded, oriented surface in \mathbb{R}^3 , called a *Seifert surface*.

Let g(K) be the minimal genus of any Seifert surface for K.

It is a theorem of Seifert that any knot can be realized as the boundary of an embedded, oriented surface in \mathbb{R}^3 , called a *Seifert surface*.

Let g(K) be the minimal genus of any Seifert surface for K.

THEOREM: $g(K_1 \# K_2) = g(K_1) + g(K_2)$

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$.

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$. There is a surface $F \subset B^4$ with $\partial F = K$, called a *slice surface*.

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$. There is a surface $F \subset B^4$ with $\partial F = K$, called a *slice surface*. Let $g_s(K)$ be the minimal genus of a slice surface for K.

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$. There is a surface $F \subset B^4$ with $\partial F = K$, called a *slice surface*. Let $g_s(K)$ be the minimal genus of a slice surface for K. Clearly, $g_s(K) \leq g(K)$.

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$. There is a surface $F \subset B^4$ with $\partial F = K$, called a *slice surface*. Let $g_s(K)$ be the minimal genus of a slice surface for K. Clearly, $g_s(K) \leq g(K)$. Also, $g_s(K) \leq u(K)$.

Think of $K \subset \mathbb{R}^3 \cup \{\infty\} = S^3 = \partial B^4$. There is a surface $F \subset B^4$ with $\partial F = K$, called a *slice surface*. Let $g_s(K)$ be the minimal genus of a slice surface for K. Clearly, $g_s(K) \leq g(K)$. Also, $g_s(K) \leq u(K)$. There are non-trivial knots with $g_s = 0$; e.g.

$$K' = K \# \operatorname{mirr}(-K).$$

There is a unique knot invariant $K \mapsto \Delta_K(t) \in \mathbb{Z}[t, t^{-1}]$ characterized by the following properties:

There is a unique knot invariant $K \mapsto \Delta_K(t) \in \mathbb{Z}[t, t^{-1}]$ characterized by the following properties:

•
$$\Delta_O(t) \equiv 1$$
 for $O =$ the unknot.

There is a unique knot invariant $K \mapsto \Delta_K(t) \in \mathbb{Z}[t, t^{-1}]$ characterized by the following properties:

•
$$\Delta_O(t) \equiv 1$$
 for $O =$ the unknot.

•
$$\Delta_{K_+}(t) - \Delta_{K_-}(t) = (t^{1/2} - t^{-1/2}) \cdot \Delta_{K_0}(t)$$

There is a unique knot invariant $K \mapsto \Delta_K(t) \in \mathbb{Z}[t, t^{-1}]$ characterized by the following properties:

•
$$\Delta_O(t) \equiv 1$$
 for $O =$ the unknot.

• $\Delta_{K_+}(t) - \Delta_{K_-}(t) = (t^{1/2} - t^{-1/2}) \cdot \Delta_{K_0}(t)$ (For this, we have to extend Δ to oriented links, for which it takes takes values in $\mathbb{Z}[t^{1/2}, t^{-1/2}]$.)

There is a unique knot invariant $K \mapsto \Delta_K(t) \in \mathbb{Z}[t, t^{-1}]$ characterized by the following properties:

•
$$\Delta_O(t) \equiv 1$$
 for $O =$ the unknot.

▲_{K+}(t) - Δ_{K-}(t) = (t^{1/2} - t^{-1/2}) · Δ_{K0}(t) (For this, we have to extend Δ to oriented links, for which it takes takes values in ℤ[t^{1/2}, t^{-1/2}].)

The above characterization is due to John Conway

Some advantages:

Some advantages:

 It has a conceputal interpretation. (This was why it was introduced by Alexander in 1928.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some advantages:

- It has a conceputal interpretation. (This was why it was introduced by Alexander in 1928.)
- It can be computed explicitly from a knot projection. It can be thought of as counts of maximal subtrees of the "black graph".

Some advantages:

- It has a conceputal interpretation. (This was why it was introduced by Alexander in 1928.)
- It can be computed explicitly from a knot projection. It can be thought of as counts of maximal subtrees of the "black graph".

Shortcomings

Some advantages:

- It has a conceputal interpretation. (This was why it was introduced by Alexander in 1928.)
- It can be computed explicitly from a knot projection. It can be thought of as counts of maximal subtrees of the "black graph".

Shortcomings

It is but a polynomial: it has limited algebraic structure.

Some advantages:

- It has a conceputal interpretation. (This was why it was introduced by Alexander in 1928.)
- It can be computed explicitly from a knot projection. It can be thought of as counts of maximal subtrees of the "black graph".

Shortcomings

- It is but a polynomial: it has limited algebraic structure.
- ► There are many knots it cannot distinguish: in fact, many knots have Δ_K(t) = 1.

Introduced by me and Zoltán Szabó in 2003, and independently Jacob Rasmussen.

Introduced by me and Zoltán Szabó in 2003, and independently Jacob Rasmussen. This is a (finite-diemnsional) bigraded vector space (over $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$) associated to a knot:

Introduced by me and Zoltán Szabó in 2003, and independently Jacob Rasmussen. This is a (finite-diemnsional) bigraded vector space (over $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$) associated to a knot:

$$\widehat{\mathrm{HFK}}(K) = \bigoplus_{d,s\in\mathbb{Z}} \widehat{\mathrm{HFK}}_d(K,s).$$

Introduced by me and Zoltán Szabó in 2003, and independently Jacob Rasmussen. This is a (finite-diemnsional) bigraded vector space (over $\mathbb{F} = \mathbb{Z}/2\mathbb{Z}$) associated to a knot:

$$\widehat{\mathrm{HFK}}(K) = \bigoplus_{d,s\in\mathbb{Z}} \widehat{\mathrm{HFK}}_d(K,s).$$

In fact, there is an even better version

$$\mathrm{HFK}^{-}(\mathcal{K}) = \bigoplus_{d,s \in \mathbb{Z}} \widehat{\mathrm{HFK}}_{m}(\mathcal{K},s),$$

structure of a module over the polynomial algebra $\mathbb{F}[U]$ where

$$U \colon \mathrm{HFK}^{-}_{d}(K,s) \to \mathrm{HFK}^{-}_{d-2}(K,s-1)$$

Knot Floer homology refines the Alexander polynomial

$$\sum_{s,d} (-1)^d \dim(\mathrm{HFK}^-_a(K,s)) t^s = \Delta_K(t).$$

Knot Floer homology refines the Alexander polynomial

$$\sum_{s,d} (-1)^d \dim(\mathrm{HFK}_a^-(K,s))t^s = \Delta_K(t).$$
$$\sum_{s,d} (-1)^d \dim(\mathrm{HFK}_d^-(K,s))t^s = \frac{\Delta_K(t)}{1-t}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Knot Floer homology detects the Seifert genus

THEOREM (Ozsváth-Szabó, 2003)

$$g(K) = \max\{s | \exists d, \widehat{\mathrm{HFK}}_d(K, s) \neq 0\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In particular, dim $\widehat{HFK}(K) = 1$ iff K = the unknot.

Let

 $\tau(\mathcal{K}) = -\max\{s | \exists \xi \in \mathrm{HFK}^-(\mathcal{K}, s) \text{ so that } U^m \cdot \xi \neq 0 \,\, \forall m \geq 0\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let

 $\tau(\mathcal{K}) = -\max\{s | \exists \xi \in \mathrm{HFK}^{-}(\mathcal{K}, s) \text{ so that } U^{m} \cdot \xi \neq 0 \,\, \forall m \geq 0\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\blacktriangleright \tau(O) = 0.$$

Let

$$\tau({\mathcal K}) = -\max\{s \big| \exists \xi \in \mathrm{HFK}^-({\mathcal K},s) \text{ so that } U^m \cdot \xi \neq 0 \,\, \forall m \geq 0\}$$

$$\tau(O) = 0.$$
 $|\tau(K_+) - \tau(K_-)| \le 1$; and therefore $|\tau(K)| \le u(K).$

Let

 $\tau(\mathcal{K}) = -\max\{s \big| \exists \xi \in \mathrm{HFK}^-(\mathcal{K},s) \text{ so that } U^m \cdot \xi \neq 0 \,\, \forall m \geq 0\}$

$$\tau(O) = 0.$$

►
$$|\tau(K_+) - \tau(K_-)| \le 1$$
; and therefore $|\tau(K)| \le u(K)$.

τ(T_{p,q}) = (p-1)(q-1)/2; so the Milnor conjecture follows immediately.

$$|\tau(K)| \leq g_s(K).$$

 (Moise, 1952) Any closed, topological 3-manifold has a unique smooth structure up to diffeomorphism.

 (Moise, 1952) Any closed, topological 3-manifold has a unique smooth structure up to diffeomorphism.

Freedman, 1980) Any knot K ⊂ S³ with Δ_K(t) ≡ 1 is topologically slice.

- (Moise, 1952) Any closed, topological 3-manifold has a unique smooth structure up to diffeomorphism.
- Freedman, 1980) Any knot K ⊂ S³ with Δ_K(t) ≡ 1 is topologically slice.
- (Freedman amd Quinn, 1990) Any connected, non-compact manifold admits a smooth structure.

 If K ⊂ S³ is topologically slice, then there is a smooth four-manifold R_K ≃ ℝ⁴ so that X_K embeds smoothly in R_K.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If K ⊂ S³ is topologically slice, then there is a smooth four-manifold R_K ≃ ℝ⁴ so that X_K embeds smoothly in R_K. Glue D⁴ minus the slice disk to X_K. (This uses Moise and Freedman-Quinn.)

- If K ⊂ S³ is topologically slice, then there is a smooth four-manifold R_K ≃ ℝ⁴ so that X_K embeds smoothly in R_K. Glue D⁴ minus the slice disk to X_K. (This uses Moise and Freedman-Quinn.)
- If X_K embeds smoothly into \mathbb{R}^4 , then K is smoothly slice.

- If K ⊂ S³ is topologically slice, then there is a smooth four-manifold R_K ≃ ℝ⁴ so that X_K embeds smoothly in R_K. Glue D⁴ minus the slice disk to X_K. (This uses Moise and Freedman-Quinn.)
- If X_K embeds smoothly into ℝ⁴, then K is smoothly slice. Take a singular surface that embeds, and consider a complement of the singularity.

Thus, we must exhibit a knot that is topologically slice but not smoothly slice. Consider the Whitehead double of $T_{2,3}$. It is topologically slice by Freedman's theorem (since $\Delta_K(t) = 1$). It has $\tau(K) = 1$, by direct computation.

Three constructions of knot Floer homology

- The original construction uses the theory of pseudo-holomorphic curves.
- In 2006, a combinatorial formulation was discovered by Ciprian Manolescu, Sucharit Sarkar, and me.

 Right now, Szabó and I are developing an algebraic formulation, which is much more computable.

I do own a tie (or I did in 1998)

Ivor, my father, and Ali Hooshyar (with Yuval Ne'eeman)

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - の Q ()・

Engelbert Schucking, Ne'eman, Roger Penrose

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you