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The theory of topological 4-manifolds up to homeomorphism was
revoltionized by the work of Michael Freedman in the 1980's. A
corollary of this work is the solution to the topological
4-dimensional Poincaré conjecture:

Theorem (M. Freedman) If X is a compact, four-dimensional
manifold with the property that ever loop can be contracted to a
point and every sphere can be contracted to a point, then X is
homeomorphic to S*.

Freedman imported the theory of higher-dimensional manifolds to
the study of 4-manifolds up to homeomorphism, combining aspects
of Bing's point set perspective with the algebraic topology,
especially “surgery theory” pioneered by Bill Browder.
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Smooth 4-manifold topology

What is the difference between 4-manifolds up to homeomorphism
and 4-manifolds up to diffeomorphism? This question was
pioneered by Simon Donaldson in the late 1980's. Started by
showing that there are many topological 4-manifolds with no
differentiable structure.

Idea: study the solution space to the anti-self-dual Yang-Mills
equations. Topological properties of this solution space to a
non-linear elliptic partial differential equation (depending on a
choice of Riemannian metric!) can be used to explore differential
topology of the underlying space.
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A striking 4-dimensional phenomenon

There is a 4-manifold X that is homeomorphic but not
diffeomorphic to R*. This does not occur in dimensions R” for
n# 4.

The existence follows from a combination of Freedman's and
Donaldson’s theories. In fact, Clifford Taubes showed that there
are uncountably many such manifolds. | will sketch the
construction of one. This description will hinge on knot theory.



Studying knots



The unknotting number



The unknotting number

An unknotting sequence is a sequence of crossing changes, which
ends in the “unknot”.



The unknotting number

An unknotting sequence is a sequence of crossing changes, which
ends in the “unknot”.

The unknotting number is the minimal length of any unknotting
sequence.



The unknotting number

An unknotting sequence is a sequence of crossing changes, which
ends in the “unknot”.

The unknotting number is the minimal length of any unknotting
sequence.

u(K) = 0 if and only if K=the unknot.
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An unknotting sequence is a sequence of crossing changes, which
ends in the “unknot”.

The unknotting number is the minimal length of any unknotting
sequence.

u(K) = 0 if and only if K=the unknot.

CONJECTURE u(Ki#K>) = u(K1) + u(K>)
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In the 1970's John Milnor conjectured that

u(Tpq) = —(p — 1)2(q — 1)-

This was proved by Peter Kronheimer and Tomasz Mrowka in
1991, using Donaldson theory.

There were many reproofs of this since; | will sketch one here a
little later. But first, let's discuss some other knot invariants.
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The Seifert genus

It is a theorem of Seifert that any knot can be realized as the
boundary of an embedded, oriented surface in R3, called a Seifert

surface.
Let g(K) be the minimal genus of any Seifert surface for K.

THEOREM: g(K1#K>) = g(K1) + g(K2)
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The slice genus

Think of K ¢ R3U {00} = S3 = 0B*.

There is a surface F ¢ B* with OF = K, called a slice surface.
Let gs(K) be the minimal genus of a slice surface for K.
Clearly, gs(K) < g(K).

Also, gs(K) < u(K).

There are non-trivial knots with g; = 0; e.g.

K' = K#mirr(—K).
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The Alexander polynomial

There is a unique knot invariant K +— Ax(t) € Z[t, t7!]
characterized by the following properties:
» Ap(t) =1 for O = the unknot.
> Ak, (t) — Ak (t) = (tY2 = t71/2) - Ay, (t) (For this, we have
to extend A to oriented links, for which it takes takes values
in Z[t1/2, +71/2])

The above characterization is due to John Conway



The Alexander polynomial

Some advantages:



The Alexander polynomial

Some advantages:

» It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)



The Alexander polynomial

Some advantages:

» It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)

> It can be computed explicitly from a knot projection. It can
be thought of as counts of maximal subtrees of the “black
graph”.



The Alexander polynomial

Some advantages:

» It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)

> It can be computed explicitly from a knot projection. It can
be thought of as counts of maximal subtrees of the “black
graph”.
Shortcomings



The Alexander polynomial

Some advantages:

» It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)

> It can be computed explicitly from a knot projection. It can
be thought of as counts of maximal subtrees of the “black
graph”.
Shortcomings

» It is but a polynomial: it has limited algebraic structure.



The Alexander polynomial

Some advantages:

» It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)

> It can be computed explicitly from a knot projection. It can
be thought of as counts of maximal subtrees of the “black
graph”.
Shortcomings
» It is but a polynomial: it has limited algebraic structure.

» There are many knots it cannot distinguish: in fact, many
knots have Ak(t) = 1.
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Knot Floer homology

Introduced by me and Zoltan Szabd in 2003, and independently
Jacob Rasmussen. This is a (finite-diemnsional) bigraded vector
space (over F = Z/2Z) associated to a knot:

HFK(K) = @ HFKq(K, s).
d,seZ

In fact, there is an even better version

HFK™(K) = @ HFKn(K,s),
d,seZ

structure of a module over the polynomial algebra F[U] where

U: HFK,(K,s) — HFK, ,(K,s —1)
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Knot Floer homology refines the Alexander polynomial

> (1)?dim(HFK; (K, 5))t° = Ak(t).
s,d

> (1) dim(HFK (K, 5))t° =
s,d

Ak (t)
1—t°




Knot Floer homology detects the Seifert genus

THEOREM (Ozsvéth-Szabé, 2003)
g(K) = max{s|3d, HFK4(K, s) # 0}.

In particular, dim HFK(K) = 1 iff K = the unknot.
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A numerical invariant from Knot Floer homology

Let

7(K) = — max{s|3¢ € HFK™(K,s) so that U™ - £ # 0 VYm > 0}

» 7(0) =0.

» |7(K;) — 7(K2)| < 1; and therefore |7(K)| < u(K).

> 7(Thq) = %; so the Milnor conjecture follows
immediately.

> [T(K)| < gs(K).
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The existence of an exotic R*

The construction follows from the existence of a topologically slice,
but not smoothly slice knot, and the following ingredients:
> (Moise, 1952) Any closed, topological 3-manifold has a unique
smooth structure up to diffeomorphism.
» (Freedman, 1980) Any knot K C S with Ak(t) =1 s
topologically slice.

» (Freedman amd Quinn, 1990) Any connected, non-compact
manifold admits a smooth structure.
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Construction of an “exotic R*"

» If K C S3 is topologically slice, then there is a smooth
four-manifold Rk ~ R* so that Xy embeds smoothly in Rg.
Glue D* minus the slice disk to Xk. (This uses Moise and
Freedman-Quinn.)

» If Xx embeds smoothly into R*, then K is smoothly slice.
Take a singular surface that embeds, and consider a
complement of the singularity.



Construction of the exotic R*

Thus, we must exhibit a knot that is topologically slice but not
smoothly slice. Consider the Whitehead double of T53. It is
topologically slice by Freedman's theorem (since Ak(t) =1). It
has 7(K) = 1, by direct computation.



Three constructions of knot Floer homology

» The original construction uses the theory of
pseudo-holomorphic curves.

» In 2006, a combinatorial formulation was discovered by
Ciprian Manolescu, Sucharit Sarkar, and me.

» Right now, Szabé and | are developing an algebraic
formulation, which is much more computable.
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lvor, my father, and Ali Hooshyar (with Yuval Ne'eeman)




Engelbert Schucking, Ne'eman, Roger Penrose




Thank you



