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4-manifold topology

The theory of topological 4-manifolds up to homeomorphism was
revoltionized by the work of Michael Freedman in the 1980’s. A
corollary of this work is the solution to the topological
4-dimensional Poincaré conjecture:

Theorem (M. Freedman) If X is a compact, four-dimensional
manifold with the property that ever loop can be contracted to a
point and every sphere can be contracted to a point, then X is
homeomorphic to S4.

Freedman imported the theory of higher-dimensional manifolds to
the study of 4-manifolds up to homeomorphism, combining aspects
of Bing’s point set perspective with the algebraic topology,
especially “surgery theory” pioneered by Bill Browder.
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Smooth 4-manifold topology

What is the difference between 4-manifolds up to homeomorphism
and 4-manifolds up to diffeomorphism?

This question was
pioneered by Simon Donaldson in the late 1980’s. Started by
showing that there are many topological 4-manifolds with no
differentiable structure.
Idea: study the solution space to the anti-self-dual Yang-Mills
equations. Topological properties of this solution space to a
non-linear elliptic partial differential equation (depending on a
choice of Riemannian metric!) can be used to explore differential
topology of the underlying space.
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A striking 4-dimensional phenomenon

There is a 4-manifold X that is homeomorphic but not
diffeomorphic to R4.

This does not occur in dimensions Rn for
n 6= 4.
The existence follows from a combination of Freedman’s and
Donaldson’s theories. In fact, Clifford Taubes showed that there
are uncountably many such manifolds. I will sketch the
construction of one. This description will hinge on knot theory.
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Studying knots



The unknotting number

An unknotting sequence is a sequence of crossing changes, which
ends in the “unknot”.
The unknotting number is the minimal length of any unknotting
sequence.
u(K ) = 0 if and only if K=the unknot.

CONJECTURE u(K1#K2) = u(K1) + u(K2)
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More on the unknotting number

In the 1970’s John Milnor conjectured that

u(Tp,q) =
(p − 1)(q − 1)

2
.

This was proved by Peter Kronheimer and Tomasz Mrowka in
1991, using Donaldson theory.
There were many reproofs of this since; I will sketch one here a
little later. But first, let’s discuss some other knot invariants.
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The Seifert genus

It is a theorem of Seifert that any knot can be realized as the
boundary of an embedded, oriented surface in R3, called a Seifert
surface.

Let g(K ) be the minimal genus of any Seifert surface for K .
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The slice genus

Think of K ⊂ R3 ∪ {∞} = S3 = ∂B4.

There is a surface F ⊂ B4 with ∂F = K , called a slice surface.
Let gs(K ) be the minimal genus of a slice surface for K .
Clearly, gs(K ) ≤ g(K ).
Also, gs(K ) ≤ u(K ).
There are non-trivial knots with gs = 0; e.g.

K ′ = K#mirr(−K ).
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The Alexander polynomial

There is a unique knot invariant K 7→ ∆K (t) ∈ Z[t, t−1]
characterized by the following properties:

I ∆O(t) ≡ 1 for O = the unknot.

I ∆K+(t)−∆K−(t) = (t1/2 − t−1/2) ·∆K0(t) (For this, we have
to extend ∆ to oriented links, for which it takes takes values
in Z[t1/2, t−1/2].)

The above characterization is due to John Conway



The Alexander polynomial

There is a unique knot invariant K 7→ ∆K (t) ∈ Z[t, t−1]
characterized by the following properties:

I ∆O(t) ≡ 1 for O = the unknot.

I ∆K+(t)−∆K−(t) = (t1/2 − t−1/2) ·∆K0(t) (For this, we have
to extend ∆ to oriented links, for which it takes takes values
in Z[t1/2, t−1/2].)

The above characterization is due to John Conway



The Alexander polynomial

There is a unique knot invariant K 7→ ∆K (t) ∈ Z[t, t−1]
characterized by the following properties:

I ∆O(t) ≡ 1 for O = the unknot.

I ∆K+(t)−∆K−(t) = (t1/2 − t−1/2) ·∆K0(t)

(For this, we have
to extend ∆ to oriented links, for which it takes takes values
in Z[t1/2, t−1/2].)

The above characterization is due to John Conway



The Alexander polynomial

There is a unique knot invariant K 7→ ∆K (t) ∈ Z[t, t−1]
characterized by the following properties:

I ∆O(t) ≡ 1 for O = the unknot.

I ∆K+(t)−∆K−(t) = (t1/2 − t−1/2) ·∆K0(t) (For this, we have
to extend ∆ to oriented links, for which it takes takes values
in Z[t1/2, t−1/2].)

The above characterization is due to John Conway



The Alexander polynomial

There is a unique knot invariant K 7→ ∆K (t) ∈ Z[t, t−1]
characterized by the following properties:

I ∆O(t) ≡ 1 for O = the unknot.

I ∆K+(t)−∆K−(t) = (t1/2 − t−1/2) ·∆K0(t) (For this, we have
to extend ∆ to oriented links, for which it takes takes values
in Z[t1/2, t−1/2].)

The above characterization is due to John Conway



The Alexander polynomial

Some advantages:

I It has a conceputal interpretation. (This was why it was
introduced by Alexander in 1928.)

I It can be computed explicitly from a knot projection. It can
be thought of as counts of maximal subtrees of the “black
graph”.

Shortcomings

I It is but a polynomial: it has limited algebraic structure.

I There are many knots it cannot distinguish: in fact, many
knots have ∆K (t) = 1.
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Knot Floer homology

Introduced by me and Zoltán Szabó in 2003, and independently
Jacob Rasmussen.

This is a (finite-diemnsional) bigraded vector
space (over F = Z/2Z) associated to a knot:

ĤFK(K ) =
⊕
d ,s∈Z

ĤFKd(K , s).

In fact, there is an even better version

HFK−(K ) =
⊕
d ,s∈Z

ĤFKm(K , s),

structure of a module over the polynomial algebra F[U] where

U : HFK−d (K , s)→ HFK−d−2(K , s − 1)

.
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Knot Floer homology refines the Alexander polynomial
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Knot Floer homology detects the Seifert genus

THEOREM (Ozsváth-Szabó, 2003)

g(K ) = max{s
∣∣∃d , ĤFKd(K , s) 6= 0}.

In particular, dim ĤFK(K ) = 1 iff K = the unknot.



A numerical invariant from Knot Floer homology

Let

τ(K ) = −max{s
∣∣∃ξ ∈ HFK−(K , s) so that Um · ξ 6= 0 ∀m ≥ 0}

I τ(O) = 0.

I |τ(K+)− τ(K−)| ≤ 1; and therefore |τ(K )| ≤ u(K ).

I τ(Tp,q) = (p−1)(q−1)
2 ; so the Milnor conjecture follows

immediately.

I |τ(K )| ≤ gs(K ).
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The existence of an exotic R4

The construction follows from the existence of a topologically slice,
but not smoothly slice knot, and the following ingredients:

I (Moise, 1952) Any closed, topological 3-manifold has a unique
smooth structure up to diffeomorphism.

I (Freedman, 1980) Any knot K ⊂ S3 with ∆K (t) ≡ 1 is
topologically slice.

I (Freedman amd Quinn, 1990) Any connected, non-compact
manifold admits a smooth structure.
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Construction of an “exotic R4”

I If K ⊂ S3 is topologically slice, then there is a smooth
four-manifold RK ' R4 so that XK embeds smoothly in RK .

Glue D4 minus the slice disk to XK . (This uses Moise and
Freedman-Quinn.)

I If XK embeds smoothly into R4, then K is smoothly slice.
Take a singular surface that embeds, and consider a
complement of the singularity.
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Construction of the exotic R4

Thus, we must exhibit a knot that is topologically slice but not
smoothly slice. Consider the Whitehead double of T2,3. It is
topologically slice by Freedman’s theorem (since ∆K (t) = 1). It
has τ(K ) = 1, by direct computation.



Three constructions of knot Floer homology

I The original construction uses the theory of
pseudo-holomorphic curves.

I In 2006, a combinatorial formulation was discovered by
Ciprian Manolescu, Sucharit Sarkar, and me.

I Right now, Szabó and I are developing an algebraic
formulation, which is much more computable.



I do own a tie (or I did in 1998)



Ivor, my father, and Ali Hooshyar (with Yuval Ne’eeman)



Engelbert Schucking, Ne’eman, Roger Penrose



Thank you


