
Dynamic and Thermodynamic Stability of
Black Holes and Black Branes

Robert M. Wald

with Stefan Hollands

arXiv:1201.0463

Commun. Math. Phys. 321, 629 (2013)

(see also K. Prabhu and R.M. Wald, Commun. Math.

Phys. 340, 253 (2015); arXiv:1501.02522

and S. Green, S. Hollands, A. Ishibashi, and R.M. Wald,

arXiv:1512.02644)



Stability of Black Holes and Black Branes

Black holes in general relativity in 4-dimensional

spacetimes are believed to be the end products of

gravitational collapse. Kerr black holes are the unique

stationary black hole solutions in 4-dimensions. It is

considerable physical and astrophysical importance to

determine if Kerr black holes are stable.

Black holes in higher dimensional spacetimes are

interesting playgrounds for various ideas in general

relativity and in string theory. A wide variety of black

hole solutions occur in higher dimensions, and it is of

interest to determine their stability. It is also of interest

to consider the stability of “black brane” solutions, which



in vacuum general relativity with vanishing cosmological

constant are simply (D + p)-dimensional spacetimes with

metric of the form

ds̃2D+p = ds2D +

p
∑

i=1

dz2i ,

where ds2D is a black hole metric.

In this work, we will define a quantity, E , called the

canonical energy, for a perturbation γab of a black hole or

black brane and show that positivity of E is necessary

and sufficient for linear stability to axisymmetric

perturbations in the following senses: (i) If E is

non-negative for all perturbations, then one has mode



stability, i.e., there do not exist exponentially growing

perturbations. (ii) If E can be made negative for a

perturbation γab, then γab cannot approach a stationary

perturbation at late times; furthermore, if γab is of the

form £tγ
′
ab, then γab must grow exponentially with time.

These results are much weaker than one would like to

prove, and our techniques, by themselves, are probably

not capable of establishing much stronger results. Thus,

our work is intended as a supplement to techniques

presently being applied to Kerr stability, not as an

improvement/replacement of them. Aside from its

general applicability, the main strength of the work is

that we can also show that positivity of E is equivalent to



thermodynamic stability and is also equivalent to the

satisfaction of a local Penrose inequality. This also will

allow us to give an extremely simple sufficient criterion

for the instability of black branes.

We restrict consideration here to asymptotically flat

black holes in vacuum general relativity in D-spacetime

dimensions, as well as the corresponding black branes.

However, our techniques and many of our results

generalize straightforwardly to include matter fields and

other asymptotic conditions.



Thermodynamic Stability

Consider a finite system with a large number of degrees

of freedom, with a time translation invariant dynamics.

The energy, E, and some finite number of other “state

parameters” Xi will be conserved under dynamical

evolution but we assume that the remaining degrees of

freedom will be “effectively ergodic.” The entropy, S, of

any state is the logarithm of the number of states that

“macroscopically look like” the given state. By

definition, a thermal equilibrium state is an extremum of

S at fixed (E,Xi). For thermal equilibrium states, the

change in entropy, S, under a perturbation depends only

on the change in the state parameters, so perturbations



of thermal equilibrium states satisfy the first law of

thermodynamics,

δE = TδS +
∑

i

YiδXi ,

where Yi = (∂E/∂Xi)S. Note that this relation holds

even if the perturbations are not to other thermal

equilibrium states.

A thermal equilibrium state will be locally

thermodynamically stable if S is a local maximum at fixed

(E,Xi), i.e., if δ
2S < 0 for all variations that keep (E,Xi)

fixed to first and second order. In view of the first law



(and assuming T > 0), this is equivalent the condition

δ2E − Tδ2S −
∑

i

Yiδ
2Xi > 0

for all variations for which (E,Xi) are kept fixed only to

first order.

Now consider a homogeneous (and hence infinite) system,

whose thermodynamic states are characterized by

(E,Xi), where these quantities now denote the amount of

energy and other state parameters “per unit volume” (so

these quantities are now assumed to be “intensive”). The

condition for thermodynamic stability remains the same,

but now there is no need to require that (E,Xi) be fixed

to first order because energy and other extensive



variables can be “borrowed” from one part of the system

and given to another. Thus, for the system to be

thermodynamically unstable, the above equation must

hold for any first order variation. In particular, the

system will be thermodynamically unstable if the Hessian

matrix

HS =





∂2S
∂E2

∂2S
∂Xi∂E

∂2S
∂E∂Xi

∂2S
∂Xi∂Xj



 .

admit a positive eigenvalue. If this happens, then one

can increase total entropy by exchanging E and/or Xi

between different parts of the system. For the case of E,

this corresponds to having a negative heat capacity.



In particular, a homogeneous system with a negative heat

capacity must be thermodynamically unstable, but this

need not be the case for a finite system.



Stability of Black Holes and Black Branes

Black holes and black branes are thermodynamic

systems, with

E ↔ M

S ↔
A

4
Xi ↔ Ji, Qi

Thus, in the vacuum case (Qi = 0), the analog of the

criterion for thermodynamic stablity of a black hole (i.e.,

a finite system) is that for all perturbations for which

δM = δJi = 0, we have



δ2M −
κ

8π
δ2A−

∑

i

Ωiδ
2Ji > 0 .

We will show that this criterion is equivalent to positivity

of canonical energy, E , and thus, for axisymmetric

perturbations, is necessary and sufficient for dynamical

stability of a black hole.

On the other hand, black branes are homogeneous

systems, so a sufficient condition for instability of a black

brane is that the Hessian matrix

HA =





∂2A
∂M2

∂2A
∂Ji∂M

∂2A
∂M∂Ji

∂2A
∂Ji∂Jj



 .



admits a positive eigenvalue. It was conjectured by

Gubser and Mitra that this condition is sufficient for

black brane instability. We will prove the Gubser-Mitra

conjecture.

As an application, the Schwarzschild black hole has

negative heat capacity namely (A = 16πM 2, so

∂2A/∂M 2 > 0). This does not imply that the

Schwarzschild black hole is dynamically unstable (and,

indeed, it is well known to be stable). However, this

calculation does imply that the Schwarzschild black

string is unstable!



Local Penrose Inequality

Suppose one has a family of stationary, axisymmetric

black holes parametrized by M and angular momenta

J1, . . . , JN . Consider a one-parameter family gab(λ) of

axisymmetric spacetimes, with gab(0) being a member of

this family with surface gravity κ > 0. Consider initial

data on a hypersurface Σ passing through the bifurcation

surface B. By the linearized Raychauduri equation, to

first order in λ, the event horizon coincides with the

apparent horizon on Σ. They need not coincide to second

order in λ, but since B is an extremal surface in the

background spacetime, their areas must agree to second

order. Let A denotes the area of the apparent horizon of



the perturbed spacetime, Ā denotes the the event horizon

area of the stationary black hole with the same mass and

angular momentum as the perturbed spacetime. Suppose

that to second order, we have

δ2A > δ2Ā

Since (i) the area of the event horizon can only increase

with time (by cosmic censorship), (ii) the final mass of

the black hole cannot be larger than the initial total mass

(by positivity of Bondi flux), (iii) its final angular

momenta must equal the initial angular momenta (by

axisymmetry), and (iv) Ā(M,J1, . . . , JN is an increasing

function of M at fixed Ji (by the first law of black hole



mechanics with κ > 0), it follows that there would be a

contradiction if the perturbed black hole solution were to

settle down to a stationary black hole in the family. This

implies that satisfaction of this inequality implies

instablity—although it does not imply stability if

δ2A ≤ δ2Ā always holds.

Our fundamental stability criterion E ≥ 0 implies that

satisfaction of δ2A ≤ δ2Ā is necessary and sufficient for

black hole stability with respect to axisymmetric

perturbations.



Variational Formulas

Lagrangian for vacuum general relativity:

La1...aD =
1

16π
R ǫa1...aD .

First variation:

δL = E · δg + dθ ,

with

θa1...ad−1
=

1

16π
gacgbd(∇dδgbc −∇cδgbd)ǫca1...ad−1

.

Symplectic current ((D − 1)-form):

ω(g; δ1g, δ2g) = δ1θ(g; δ2g)− δ2θ(g; δ1g) .



Symplectic form:

WΣ(g; δ1g, δ2g) ≡

∫

Σ

ω(g; δ1g, δ2g)

= −
1

32π

∫

Σ

(δ1habδ2p
ab − δ2habδ1p

ab) ,

with

pab ≡ h1/2(Kab − habK) .

Noether current:

JX ≡ θ(g,£Xg)−X · L

= X · C + dQX .



Fundamental variational identity:

ω(g; δg,£Xg) = X · [E(g) · δg] +X · δC

+d [δQX(g)−X · θ(g; δg)]

Hamilton’s equations of motion: HX is said a

Hamiltonian for the dynamics generated by X iff the

equations of motion for g are equivalent to the relation

δHX =

∫

Σ

ω(g; δg,£Xg)

holding for all perturbations, δg of g.

ADM conserved quantities:

δHX =

∫

∞

[δQX(g)−X · θ(g; δg)]



For a stationary black hole, choose X to be the horizon

Killing field

Ka = ta +
∑

Ωiφ
a
i

Integration of the fundamental identity yields the first

law of black hole mechanics:

0 = δM −
∑

i

ΩiδJi −
κ

8π
δA .



Horizon Gauge Conditions

Consider stationary black holes with surface gravity

κ > 0, so the event horizon is of “bifurcate type,” with

bifurcation surface B. Consider an arbitrary perturbation

γ = δg. Gauge condition that ensures that the location of

the horizon does not change to first order:

δϑ|B = 0 .

Additional gauge condition that we impose:

δǫ|B =
δA

A
ǫ .



Canonical Energy

Define the canonical energy of a perturbation γ = δg by

E ≡ WΣ (g; γ,£tγ)

The second variation of our fundamental identity then

yields (for axisymmetric perturbations)

E = δ2M −
∑

i

Ωiδ
2Ji −

κ

8π
δ2A .

More generally, can view the canonical energy as a

bilinear form E(γ1, γ2) =WΣ(g; γ1,£tγ2) on

perturbations. E can be shown to satisfy the following

properties:



• E is conserved, i.e., it takes the same value if

evaluated on another Cauchy surface Σ′ extending

from infinity to B.

• E is symmetric, E(γ1, γ2) = E(γ2, γ1)

• When restricted to perturbations for which δA = 0

and δPi = 0 (where Pi is the ADM linear

momentum), E is gauge invariant.

• When restricted to the subspace, V , of perturbations

for which δM = δJi = δPi = 0 (and hence, by the

first law of black hole mechanics δA = 0), we have

E(γ′, γ) = 0 for all γ′ ∈ V if and only if γ is a

perturbation towards another stationary and



axisymmetric black hole.

Thus, if we restrict to perturbations in the subspace, V ′,

of perturbations in V modulo perturbations towards

other stationary black holes, then E is a non-degenerate

quadratic form. Consequently, on V ′, either (a) E is

positive definite or (b) there is a ψ ∈ V ′ such that

E(ψ) < 0. If (a) holds, we have mode stability.



Flux Formulas

Let δNab denote the perturbed Bondi news tensor at null

infinity, I+, and let δσab denote the perturbed shear on

the horizon, H. If the perturbed black hole were to

“settle down” to another stationary black hole at late

times, then δNab → 0 and δσab → 0 at late times. We

show that—for axisymmetric perturbations—the change

in canonical energy would then be given by

∆E = −
1

16π

∫

I

δÑcdδÑ
cd−

1

4π

∫

H

(Ka∇au) δσcdδσ
cd ≤ 0 .

Thus, E can only decrease. Therefore if one has a

perturbation ψ ∈ V ′ such that E(ψ) < 0, then ψ cannot

“settle down” to a stationary solution at late times



because E = 0 for stationary perturbations with

δM = δJi = δPi = 0. Thus, in case (b) we have

instability in the sense that the perturbation cannot

asymptotically approach a stationary perturbation.



Instability of Black Branes

Theorem: Suppose a family of black holes parametrized

by (M,Ji) is such that at (M0, J0A) there exists a

perturbation within the black hole family for which

E < 0. Then, for any black brane corresponding to

(M0, J0A) one can find a sufficiently long wavelength

perturbation for which Ẽ < 0 and

δM̃ = δJ̃A = δP̃i = δÃ = δT̃i = 0.

This result is proven by modifying the initial data for the

perturbation to another black hole with E < 0 by

multiplying it by exp(ikz) and then re-adjusting it so

that the modified data satisfies the constraints. The new

data will automatically satisfy



δM̃ = δJ̃A = δP̃i = δÃ = δT̃i = 0 because of the exp(ikz)

factor. For sufficiently small k, it can be shown to satisfy

Ẽ < 0.



Equivalence to Local Penrose Inequality

Let ḡab(M,Ji) be a family of stationary, axisymmetric,

and asymptotically flat black hole metrics on M . Let

gab(λ) be a one-parameter family of axisymmetric metrics

such that gab(0) = ḡab(M0, J0A). Let M(λ), Ji(λ) denote

the mass and angular momenta of gab(λ) and let A(λ)

denote the area of its apparent horizon. Let

ḡab(λ) = ḡab(M(λ), Ji(λ)) denote the one-parameter

family of stationary black holes with the same mass and

angular momenta as gab(λ).

Theorem: There exists a one-parameter family gab(λ) for

which

A(λ) > Ā(λ)



to second order in λ if and only if there exists a

perturbation γ′ab of ḡab(M0, J0A) with

δM = δJi = δPi = 0 such that E(γ′) < 0.

Proof: The first law of black hole mechanics implies

A(λ) = Ā(λ) to first order in λ, so what counts are the

second order variations. Since the families have the same

mass and angular momenta, we have

κ

8π

[

d2A

dλ2
(0)−

d2Ā

dλ2
(0)

]

= E(γ̄, γ̄)− E(γ, γ)

= −E(γ′, γ′) + 2E(γ′, γ̄)

= −E(γ′, γ′)

where γ′ = γ̄ − γ.



Are We Done with Linear Stability

Theory for Black Holes?

Not quite:

• The formula for E is rather complicated, and the

linearized initial data must satisfy the linearized

constraints, so its not that easy to determine

positivity of E .

• There is a long way to go from positivity of E and

(true) linear stability and instability.

• Only axisymmetric perturbations are treated.

And, of course, only linear stability is being analyzed.



E =

∫

Σ

N

(

h
1

2

{

1

2
Rab(h)qc

cqab − 2 Rac(h)q
abqb

c

−
1

2
qacDaDcqd

d −
1

2
qacDbDbqac + qacDbDaqcb

−
3

2
Da(q

bcDaqbc)−
3

2
Da(q

abDbqc
c) +

1

2
Da(qd

dDaqc
c)

+2 Da(q
a
cDbq

cb) +Da(q
b
cDbq

ac)−
1

2
Da(qc

cDbqab)

}

+h−
1

2

{

2 pabp
ab +

1

2
πabπ

ab(qa
a)2 − πabp

abqc
c

−3 πa
bπ

bcqd
dqac −

2

D − 2
(pa

a)2 +
3

D − 2
πc

cpb
bqa

a

+
3

D − 2
πd

dπabqc
cqab + 8 πc

bqacp
ab + πcdπ

cdqabq
ab



+2 πabπdcqacqbd −
1

D − 2
(πc

c)2qabq
ab

−
1

2(D − 2)
(πb

b)2(qa
a)2 −

4

D − 2
πc

cpabqab

−
2

D − 2
(πabqab)

2 −
4

D − 2
πabpc

cqab
})

−

∫

Σ

Na

(

− 2 pbcDaqbc + 4 pcbDbqac + 2 qacDbp
cb

−2 πcbqadDbqc
d + πcbqadD

dqcb

)

+κ

∫

B

s
1

2

(

δsabδs
ab −

1

2
δsa

aδsb
b

)



Further Developments

One can naturally break-up the canonical energy into a

kinetic energy (arising from the part of the perturbation

that is odd under “(t− φ)-reflection”) and a potential

energy (arising from the part of the perturbation that is

even under “(t− φ)-reflection”). Prabhu and I have

proven that the kinetic energy is always positive (for any

perturbation of any black hole or black brane). We were

then able to prove that if the potential energy is negative

for a perturbation of the form £tγ
′
ab, then this

perturbation must grow exponentially in time.

One can straightforwardly generalize our results to black

holes with a negative cosmological constant in



asymptotically AdS spacetimes. In this case, there is only

one boundary through which there can be a canonical

energy flux, so there is no need to restrict to

axisymmetric perturbations. Green, Hollands, Ishibashi

and I have proven that, in this context, all black holes

that possess an ergoregion (i.e., a region where the

horizon KVF becomes spacelike) are unstable.



Additional Further Development Recent Development:

Comparison with DHR; Axisymmetric Stability of Kerr

Recently, Dafermos, Holzegel, and Rodnianski (DHR)

have given a proof of stability and decay in Schwarzschild

of gravitational perturbations. A key step in their

argument is to construct a conserved, positive definite

energy for metric perturbations γ. This energy is

obtained by (i) constructing a (complex) Teukolsky

(Weyl curvature) variable ψ, (ii) obtaining a (complex)

Regge-Wheeler variable by taking 2 derivatives of ψ, and

(iii) obtaining a conserved energy for this Regge-Wheeler

variable. The resulting energy quantity is quadratic in

5th derivatives of the original metric perturbation.



The canonical energy of γ is quadratic in first derivatives

of γ, so the DHR energy cannot be the canonical energy

of γ. Is there a relationship between the DHR energy and

canonical energy? Yes!



Hertz Potentials

Suppose one has a linear equation

E(γ) = 0

such as the linearized Einstein equation. Suppose one

can apply a differential operator T to γ such that the

resulting quantity ψ = Tγ is such that

Eγ = 0 ⇒ Oψ = 0 for some differential operator O. (In

the case of interest, ψ is the Teukolsky variable and

Oψ = 0 is the Teukolsky equation.) In this situation,

there is an operator identity of the form

SE = OT



for some operator S. Taking (formal) adjoints, we obtain

E†S† = T †O†

But if E† = E we thereby obtain the result that if χ

satisfies O†χ = 0, then γ ≡ S†χ satisfies Eγ = 0. Thus,

we can use solutions of O†χ = 0 as “potentials” to

generate solutions to the original equation of interest. In

the case of Kerr O† is just the Teukolsky operator for the

opposite spin weight.



DHR Energy

The DHR energy is just the canonical energy of the new

metric perturbation obtained by using the Teukolsky

variable of the original metric perturbation as a Hertz

potential.

Since the Hertz potentials and corresponding canonical

energy construction can be generalized to Kerr, it should

be possible to generalize the DHR proof of stability to

axisymmetric perturbations of Kerr. However, although

we thereby have an explicit expression for an energy

quantity that should be positive, it does not appear

straightforward to show that it is positive!



Main Conclusion

Dynamical stability of a black hole is equivalent to its

thermodynamic stability with respect to axisymmetric

perturbations.

Thus, the remarkable relationship between the laws of

black hole physics and the laws of thermodynamics

extends to dynamical stability.


