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My constrained perspective

Growing up with Peter Bergmann

Figure: Max Bergmann with son Peter
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My constrained perspective

Figure: Peter Bergmann’s aunt, Clara Grunwald. Founder of the German
Montessori movement
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My constrained perspective

Figure: Peter Bergmann in 1982
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Rosenfeld and Pauli

“I came to Zürich before the summer semester I came from Göttingen
where I was still at the time. I had already corresponded with Bohr, asking
him whether I could come to Copenhagen and so I wrote to Pauli then to
ask him if he would take me up. He was very friendly and he said: With
pleasure, because we have just completed a scheme of quantum
electrodynamics with Heisenberg; dass ist ein Gebiet, dass noch nicht
abgebrochen ist. So he was eager to have people brush up the details and
explore the consequences and that is what I did at Zürich actually”
(AHQM 7/19/63, p 5)
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

“ I got provoked by Pauli to tackle this problem of the quantization of
gravitation and the gravitation effects of light quanta, which at that time
were more interesting. When I explained to Pauli what I wanted to work
out, I think it was the Kerr effect or some optical effect, he said Well, you
may do that, and I am glad beforehand for any result you may find. That
was a way of saying that this was a problem that was not instructive, that
any result might come out, whereas at that time, the calculation of the
self energy of the light quantum arising from its gravitational field was
done with a very definite purpose.” (AHQM 7/19/63, p 8)

“Then Pauli told me that he was not at all pleased with longitudinal
waves, so he wanted to have them treated another way, which I did, but
that was not more enlightening, far from it.” (AHQM 7/19/63, p 9)
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

“ There was this point in their proof in which the invariants of the
Hamiltonian seemed to depend on a special structure of the Hamiltonian,
and that looked suspicious Yes, I understand that [said Pauli], but we have
not been able to find a mistake in our calculation and we do not
understand what this means; we suspect that it must be wrong, but we
dont know. Then the thing came to a crisis through the fact that I tried to
make a more general formulation of field quantization It was a purely
abstract scheme which worked in a completely general way with only this
complication of accessary conditions, but at any rate, not due to any
special structure but only to the existence of invariance with respect to a
group. So at that stage I was convinced that there must be a mistake in
the original paper (AHQM 7/19/63, p 5)
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

“As I was investigating these relations in the especially instructive example
of gravitation theory, Professor Pauli helpfully indicated to me the
principles of a simpler and more natural manner of applying the
Hamiltionian procedure in the presence of identities. This procedure is not
subject to the disadvantages of the earlier methods.
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Translation and commentaries

Translation and Commentary of Léon Rosenfelds Zur Quantelung der
Wellenfelder, Max Planck Institute for the History of Science Preprint
381

Léon Rosenfeld and the challenge of the vanishing momentum in
quantum electrodynamics, Studies in History and Philosophy of
Modern Physics 40 (2009) 363

Léon Rosenfeld’s pioneering steps toward a quantum theory of gravity,
J. Phys.: Conf. Ser. 222 (2010) 012052
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Rosenfeld’s coordinate transformations

Considers infinitesimal coordinate
transformations x ′µ = xµ + δxν ,
where

δxν = aν,0
r (x)εr (x) + aν,σ

r (x)
∂εr

∂xσ

+ · · · ,

Assumes variables Qα transform
as

δQα = cαr (x ,Q)εr (x)+cσ
αr (x ,Q)

∂εr

∂xσ

+cσ···τ
αr (x ,Q)

∂jεr

∂xσ · · · ∂xτ
.

Free relativistic particle
example: qµ(t) is
parameterized spacetime
position. Under the
infinitesimal
reparameterization

t ′ = t − ε(t)

δqµ := q′µ(t ′)− qµ(t) = 0,

and
δN = ε̇N,
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Rosenfeld Lagrangian

Considers Lagrangians that are
quadratic in field derivatives:

L =
1

2

(
Qα,νAαν,βµ(Q)Qβ,µ

+Qα,νBαν(Q) + Bαν(Q)Qα,ν

+C(Q)) .

Assumes that the δQα are
symmetry transformations so
that the Lagrangian transforms
as a scalar density of weight
one:

δL+ L∂δxµ

∂xµ
≡ 0. (1)

Free relativistic particle
example:

L =
1

2 N
ηµν q̇

µq̇ν − 1

2
m2c2N

Under δt = ε(t),

δL + L
∂ε

∂t
≡ 0.
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

The origin of constraints

Canonical momentum

Pα =
∂L
∂Q̇α

= Aβν,α0Qβ,ν

In the identity (1) the
coefficients of each order of
time derivative of εµ must
vanish identically. Focusing on
the second time derivative
term we deduce from
δL = Pµc0

µr ε̈
r + · · · ≡ 0 that

Pµc0
µr ≡ 0

These are primary constraints.

pN =
∂L

∂Ṅ
≡ 0.
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Singular Lagrangian

Primary constraints give null
vectors of the Legendre matrix

∂2L
∂Q̇α∂Q̇α

,

Aα0,µ0c0
µr ≡ 0.

Legendre matrix is(
N−1ηµν 0

0 0

)
with null vector

0
0
0
0
1


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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

The Hamiltonian

Since

Pα = Aα0,µ0Q̇µ + · · · , (2)

the velocities are not fixed
uniquely in terms of the
momenta. Rather,

Q̇µ =
∂ 0H
∂Pµ

+ λrc0
µr

=
∂

(
0H+ λrPνc0

νr

)
∂Pµ

=
∂H
∂Pµ

,

where the λr are arbitrary
spacetime functions.

HD =
N

2

(
p2 + m2c2

)
+ λpN

and in particular

Ṅ = λ
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

The Hamiltonian

Since

Pα = Aα0,µ0Q̇µ + · · · , (2)

the velocities are not fixed
uniquely in terms of the
momenta. Rather,

Q̇µ =
∂ 0H
∂Pµ

+ λrc0
µr

=
∂

(
0H+ λrPνc0

νr

)
∂Pµ

=
∂H
∂Pµ

,

where the λr are arbitrary
spacetime functions.

HD =
N

2

(
p2 + m2c2

)
+ λpN

and in particular
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

The generator of gauge transformations

Rosenfeld proved that active
gauge variations of Q and P
generated by

M :=

∫
d3x PαδQα

−Hδx0 − PαQα,aδx
a.

G = pNN ε̇

+

(
N

2

(
p2 + m2c2

)
+ λpN

)
ε

So

δ̄qµ = Npµε, δ̄pµ = 0,

and

δ̄N = λε + N ε̇

Note: λ spoils the group property
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Léon Rosenfeld’s constrained Hamiltonian formalism of 1930

Gauge generator is constant in time

Rosenfeld proved that
dM
dt = 0. Consequently the

coefficients of the time
derivatives of ε must vanish,
and that generally

M =

∫
d3x

(
dεr

dt
pµc0

µr

− εr
d

dt

(
pµc0

µr

))
.

In other words, the gauge generator
vanishes, and secondary constraints
arise.

Primary constraint

pN = 0

Secondary constraint(
p2 + m2c2

)
= 0.
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Rosenfeld - Dirac puzzles

Rosenfeld and Dirac

Dirac to Rosenfeld, 4/26/31: “Many thanks for sending a copy of your
paper on radiation theory, which I have read with great interest.” (Niels
Bohr Archive)

Rosenfeld to Dirac, 4/30/32: “I enclose a note about your new theory,
which is clearly not at all meant um zu kritisieren but nur um zu lernen.”
(Churchill College Archive)

Rosenfeld publishes demonstration of equivalence of Heisenberg-Pauli and
Dirac many-body theory in 1932 - submitted May 2.
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Rosenfeld - Dirac puzzles

“Thank you very much for the
paper you sent me. I found it
very interesting. The
connection which you give
between my new theory and
the Heisenberg - Pauli theory
is, of course, quite general and
holds for any kind of field (not
simply the Maxwell kind) in
any number of dimensions.
This is a very satisfactory state
of affairs.” (Niels Bohr
Archive)
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Rosenfeld - Dirac puzzles

Rosenfeld to Dirac, (5/10/1932) “ As to the doubtful sentence of
Heisenberg-Pauli, which you are right in not understanding, I would
suggest to you to examine the general invariance proof which I give in my
paper of the Annalen der Physik, 5, 113, 1930. (I sent you reprints of
both).” (Niels Bohr Archive)

Dirac to Rosenfeld, (5/16/1932) “ I have been studying your papers, but
have had some trouble in understanding the significance of your λ’s. What
exactly is meant by the statement that they are arbitrary?” (Niels Bohr
Archive)
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Rosenfeld - Dirac puzzles

Rosenfeld to Dirac, (5/21/1932) “ As to the λ’s, they enter as arbitrary or
undetermined coefficients (depending on coordinates) in the general
expression of the in terms of the Q’s and P’s. In equation (111) the
hamiltonian should be the same as that of Heisenberg-Pauli (as stated
there), so that the substitution of the Ps in terms of the in them will lead
to identities, and this implies no restriction for λ. (Churchill College
Archive)
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Rosenfeld - Dirac puzzles

Impact of Rosenfeld’s work

Pauli to O. Klein, (1/25/1955) “I would like to bring to your attention the
work by Rosenfeld in 1930. He was known here at the time as the ‘man
who quantised the Vierbein (sounds like the title of a Grimms fairy tale
doesnt it?) See part II of his work where the Vierbein appears. Much
importance was given at that time to the identities among the p’s and q’s
(that is the canonically conjugate fields) that arise from the existance of
the group of general coordinate transformations. I still remember that I
was not happy with every aspect of his work since he had to introduce
certain additional assumptions that no one was satisfied with.”
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Rosenfeld - Dirac puzzles

Remark by Dirac

“Well, I think I might answer you in much the same way that I wrote that
I felt it had probably been done before, but it was less trouble to me to
present it as something new than to search for a reference. A good deal of
my work was like that. It happened rather often that there was something
which I thought had been done before, but it seemed a great nuisance to
look through all the references to try to find it, and if it doesn’t take much
trouble to publish it, one can publish it again without claiming either that
it is new or that it has been done before. (AHQM, 5/10/1963, p 15)”
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Peter Bergmann and collaborators

Bergmann chronology
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Peter Bergmann and collaborators
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Peter Bergmann and collaborators

Hamiltonian constraint is obtained through series of linear transformations
that render trivial null vector for Legendre matrix. Second explicit
gravitational Hamiltonian (after Pirani and Schild). These first three
papers preceeded the discovery of Rosenfelds work by Bergmann’s student,
J. L. Anderson. All subsequent works of the Bergmann school cited
Rosenfeld.
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Paul Dirac

Dirac chronology

Paul Dirac presents lectures on generalized Hamiltonian dynamics in
Vancouver, August 1949

Motivation is preservation of Poincaré covariance through
parametrization of flat spacetime
Alfred Schild and Felix Pirani point out to Dirac applicability to general
relativity

Dirac lectures published in Canadian Journal of Mathematics in 1950
and 1951

Pirani and Schild submit On the quantization of Einsteins
gravitational field equations February 1950

Dirac, Bergmann and Brunings (1950) cited
First published explicit gravitational Hamiltonian (with note added in
press that Bergmann group has obtained same result “using methods
quite different from ours”)
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Paul Dirac

Dirac’s breakthrough

Dirac, The theory of gravitation in Hamiltonian form, Proc. Roy. Soc.
A246, 327 (1958)

Time derivatives of temporal components of the metric are eliminated
from the Lagrangian through the subtraction of a total time derivative
and a spatial divergence
g0a are abandoned as canonical variables. Bergmann does likewise.
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Arnowitt, Deser, and Misner

Arnowitt, Deser, and Misner

ADM derive Dirac Hamiltonian in a first order Palatini variation. First
to employ lapse and shift variables. (R. Arnowitt, S. Deser, C.
Misner, Canonical variables for general relativity, Phys. Rev. 117,
1597 (1960))
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Frozen time

Bergmann and Dirac

Figure: Excerpt of letter from Bergmann to Dirac dated October 9, 1959
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Frozen time
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Frozen time

Figure: Excerpt of response from Dirac to Bergmann, dated November 11, 1959

Salisbury (Austin College) Problem of Time May 1, 2011 32 / 42



Frozen time

If the conditions that you introduce to fix the surface are such that only
one surface satisfies the condition, then the surface cannot move at all,
the Hamiltonian will vanish strongly and the dynamical variables will be
frozen. However, one may introduce conditions which allow an infinity of
roughly parallel surfaces. The surface can then move with one degree of
freedom and there must be one nonvanishing Hamiltonian that generates
this motion. I believe my condition grsp

rs = 0 is of this second type, or
maybe it allows also a more general motion of the surface corresponding
roughly to Lorentz transformations. The non-vanishing Hamiltonian one
would get by subtracting a divergence from the density of the Hamiltonian.
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Pons, Salisbury, Shepley and Sundermeyer

Pons, Salisbury, Shepley and Sundermeyer Formalism

Pons, Salisbury, and Sundermeyer, “Revisiting observables in generally
covariant theories in the light of gauge fixing methods”, PRD 80,
084015,1-23 (2009)

Pons and Salisbury, “The issue of time in generally covariant theories
and the Komar-Bergmann approach to observables in general
relativity”, PRD 71, 12402 (2005)

Pons, Salisbury, and Shepley, “Gauge Transformations in the
Lagrangian and Hamiltonian Formalisms of Generally Covariant
Theories”, PRD 55, 658-668 (1997)
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Pons, Salisbury, Shepley and Sundermeyer The diffeomorphism-induced transformation group

Projectable Legendre transformations

Projectable infinitesimal
general coordinate
transformations

εµ(x , φ(x)) = nµ(x)ξ0 + δµ
a ξa

with nµ = (N−1,−N−1Na),
where N is the lapse and Na

the shift, and ξµ are arbitrary
infinitesimal functions of the
coordinates as well as of the
fields φ other than the lapse
and shift.

ε(t) = N−1ξ(t)
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Pons, Salisbury, Shepley and Sundermeyer The diffeomorphism-induced transformation group

Generator of gauge transformations

Gξ(t) = (Hµ+NρC ν
µρPν)ξ

µ+Pµξ̇µ .

The C ν
µρ are the structure

functions resulting form the
algebra of the Hamiltonian H0

and momentum Ha constraints
under the Poisson bracket.
Note that time dependent
canonical gauge
transformations alter the
functions λµ.
All spacelike time foliations are accessible and equivalent!

G = ξH + pN ξ̇.

δ̄qµ = pµξ = q̇µε,

δ̄N = ξ̇ = N ε̇ + Ṅε.
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Pons, Salisbury, Shepley and Sundermeyer Construction of diffeomorphism invariants

Gauge fixing through intrinsic coordinates

As a first step towards the
explicit form of the functional
invariants impose an intrinsic
coordinate-dependent gauge
condition,
χ(1)µ := xµ − Xµ(x) = 0,
where the Xµ are spacetime
scalar functions of the
canonical fields.
Preservation of the gauge
conditions under temporal
evolution leads to additional
constraints
χ(2)µ := δµ

0 −A
µ
νNν ≈ 0,

where Aµ
ρ := {Xµ,Hρ}.

χ1 = t − q0 = 0.

χ2 = 1− Np0

c
= 0
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Pons, Salisbury, Shepley and Sundermeyer Construction of diffeomorphism invariants

Transformation by finite gauge transformation

It is possible through an
appropriate rescaling of the
constraints to solve for the
finite descriptor of the gauge
transformation to the
gauge-fixed position. This
transformation is then
undertaken on all remaining
variables. Result is

IΦ ≈ Φ + χ(1)µ{Φ, Hµ}

+
1

2!
χ(1)µχ(1)ν{{Φ, Hµ}, Hν}+· · ·

H =
c

p0
H,

Iqi = qi + χ1{qi , H}

= qi + (t − q0

c
)
cpi

p0

= (qi − piq0

p0
) +

cpi

p0
t,

Ipµ = pµ, (3)

IN = c/p0.
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Pons, Salisbury, Shepley and Sundermeyer Construction of diffeomorphism invariants

Evolving constants and equations of motion

The coefficients of powers of t are invariant under arbitrary coordinate
transformations (and necessarily therefore constants of the motion).

We have a group theoretical foundation for Carlo Rovelli’s “evolving
constants”: Rovelli, PRD 42, 2638 (1990); 43, 442 (1991)

The time dependence is naturally what one expects of the gauge-fixed
solution.

Similar expansions exist in the intrinsic spatial coordinates.
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Pons, Salisbury, Shepley and Sundermeyer Construction of diffeomorphism invariants

Dirac brackets, observables, and transformation to intrinsic
coordinates

Every variable has an associated invariant (including the lapse and
shift)

We have proven that the Poisson bracket algebra of the invariants is
the invariant associated with the Dirac bracket
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Pons, Salisbury, Shepley and Sundermeyer Construction of diffeomorphism invariants

Quantization of the free relativistic particle 1

Equations of motion are

d

d t
Iqi = I{qi , H} ≈

c

p0
I{qi ,H} = c

Ipi

Ip0

,

d

d t
Ipµ = I{pµ, H} = 0,

and
d

d t
IN = I{N, H} = 0.
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Quantization of the free relativistic particle 2

Required operator algebra is [
Iqi , Iqj

]
= 0,[

Iqi , Ipj

]
= i~δij ,[

Iqi , Ip0

]
= i~

Ipi

Ip0

,

Work in a momentum representation with Ip0 = (I~p2 + m2c2)1/2 and
Hamiltonian H = Ip0c!
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