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Introduction

Focus of this talk:

Major advances in constrained Hamiltonian dynamics made by
Léon Rosenfeld in his 1930 paper

Questions to be addressed:

What were the circumstances that led to Rosenfeld’s work?

How did he exploit the Noether generator in demonstrating
not only its full constraint content but also its status as phase
space generator of all local symmetries?

Why have Rosenfeld’s achievements been largely
unrecognized?
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2. BACKGROUND TO ROSENFELD’S 1930 PAPER

“Zur Quantelung der Wellenfelder”, Annalen der Physik 397, 113
(1930)
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Education and early professional career

Born 1904 in Charleroi, Belgium

Completed graduate studies in Paris under the supervision of
Louis de Broglie and Théophile de Donder, 1926

Assistant to Max Born in Göttingen, 1928

Sought research fellowship, with Einstein’s support, to work
with Einstein “on the relations between quantum mechanics
and relativity”

Fellowship not awarded and Rosenfeld was invited by Pauli to
Zurich, 1929
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Pauli’s problem

Pauli was uncomfortable with the manner in which he and
Heisenberg had treated the U(1) gauge symmetry in their
foundational papers in quantum electromagnetic field theory,
Zeitschrift für Physik, 56,1 (1929) and 59, 168 (1930).

Rosenfeld quote, 1963: “I got provoked by Pauli to tackle this
problem of the quantization of gravitation and the gravitation
effects of light quanta”
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Background to Rosenfeld’s 1930 paper

Rosenfeld’s response

Autobiographical note, 1972: “participated in the elaboration of
the theory of quantum electrodynamics just started by Pauli and
Heisenberg, and he pursued these studies during the following
decade; his main contributions being a general method of
representation of quantized fields taking explicit account of the
symmetry properties of these fields, a general method for
constructing the energy-momentum tensor of any field, a discussion
of the implications of quantization for the gravitational field . . . ”



Intrinsic GR

Background to Rosenfeld’s 1930 paper

Rosenfeld’s Einstein-Maxwell-Dirac model

Rosenfeld’s Einstein-Maxwell-Dirac Lagrangian
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3. SYMMETRIES AND FUNDAMENTAL IDENTITIES
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Lagrangian symmetry variations

Each of the Lagrangian’s transform as scalar densities of weight
one under infinitesimal general coordinate transformations

x ′µ = xµ + εµ(x),

i.e.
δCL = −Lεµ,µ. (1)

We also have invariance under U(1) transformations with
descriptor ε. However, the gravitational Lagrangian yields a total
divergence under the local Lorentz transformations

δLeµM = εMI ξ
IJeµJ ,

i.e.,

δLLg = −1
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[(
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J (−g)
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2

)
,ν
εIJ
]
,µ

. (2)
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The fundamental identity

Summarizing, we have the fundamental identity (representing the
generic field variable by Qα),
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∂Qα
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≡ −Lεµ,µ −
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Symmetries and Fundamental Identities

Historical note: the Klein-Noether identities

Felix Klein was the first in 1918 to systematically deduce
consequences of these identities for the scalar density case. The
extension to variations that yield additional divergences has been
attributed to Klein’s assistant, Bessel-Hagen (who himself seemed
to suggest that he learned of this extension from Emmy Noether).
Professor Trautman in 1967 was one of the first to explicitly
associate the identities and corresponding conservation laws with
Noether-Bessel-Hagen. Rosenfeld seems to have learned of Klein
through Pauli. It was Klein who critiqued Pauli’s 1921
Encyclopedia article on relativity theory.
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4. PRIMARY CONSTRAINTS AND THE CONSTRUCTION OF
THE HAMILTONIAN
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Primary constraints and the construction of the Hamiltonian

Primary constraints

The coefficients of the time derivatives of the arbitrary descriptors
in the fundamental identity (3)

∂L
∂ė0I

= p0I =: φI = 0,
∂L
∂Ȧ0

= p0 =: φ = 0,

and

pµ[I eJ]µ+pψ
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=: φIJ = 0.
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Primary constraints and the construction of the Hamiltonian

Singular Lagrangian and indeterminanacy of velocities

Related to the existence of primary constraints is the singular
nature of the Legendre matrix ∂2L

∂Q̇αQ̇β
.

Rosenfeld nevertheless was able to find a general solution for the
velocities that involved arbitrary spacetime functions,

Q̇α = Q̇0
α(Q, p) + λI cαI + λ[IJ]c

IJ
α + λcα,

where the c ′s are null vectors of the Legendre matrix, the λ′s are
arbitrary functions, and Rosenfeld could construct explicitly the
special solutions Q̇0.
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Primary constraints and the construction of the Hamiltonian

The constrained Hamiltonian

Rosenfeld then showed that these general solutions could then be
substituted into pαQ̇α − L(Q, Q̇) to obtain a Hamiltonian that
generated the correct Lagrangian equations of motion.

He found that

H = H0 + λIφ
I + λIJφIJ + λcα,

and
H0(Q, p) = pαQ̇0

α(Q, p)− L(Q, Q̇0
α(Q, p)).
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5. NOETHER, KLEIN AND ROSENFELD’S INFINITESIMAL
SYMMETRY GENERATORS
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The fundamental identity rewritten

The fundamental identity (3) can equivalently be rewritten as

0 ≡ δL
δQα

δ∗Qα +

[
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where δL
δQα

= 0 are the Euler-Lagrange equations.



Intrinsic GR

Noether, Klein and Rosenfeld’s infinitesimal symmetry generators

Aside on Lie derivatives

Following Noether, Rosenfeld defines

δ∗Qα(x) := Q ′α(x)− Qα(x),

which as Professor Trautman pointed out in 2008, was one year
prior to Ślebodziński’s introduction of what van Dantzig later
dubbed minus the “Lie derivative”. Bergmann and his
collaborators, beginning in 1949, represented the variation by δ̄.
This is actually the notation that was employed by Noether in
1918.
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The conserved current and vanishing Noether charge

Rosenfeld recognized that this identity (4) yielded a conserved
current
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and a vanishing conserved charge
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The phase space generator of infinitesimal symmetry
transformations

Rosenfeld was able prove that M generated the correct
infinitesimal variations of all of the phase space variables.

He proved that the correct variations of pα were generated by
making use of the fundamental identity (3)!

Thus, in addition to U(1) and local Lorentz transformations, he
also had the correct generator of infinitesimal general coordinate
transformations.
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The Rosenfeld-Noether generator and primary constraints

The Rosenfeld-Noether generator in terms of the primary
constraints is

M =

∫
d3x
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−φI e0I ε̇
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Secondary constraints

Rosenfeld observed that since M vanishes for arbitrarily
time-dependent descriptors, each line in the previous expression
must separately vanish. Thus Rosenfeld was able to derive
secondary constraints even without explicit knowledge of the
Hamiltonian!

Furthermore, He observed that the coefficients of εµ are the four
Einstein equations that do not involve accelerations.
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6. FROM INFINITESIMAL TO FINITE CANONICAL
SYMMETRY TRANSFORMATIONS
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From infinitesimal to finite canonical symmetry transformations

The problem with coordinate time transformations

Rosenfeld did observe (at least implicitly) that it was not possible
to implement finite coordinate transformations x0(x) using this
generator. This posed a serious obstacle to Bergmann’s
quantization program in the 1950’s, as he recollected in 1979:

“During the early Fifties those of us interested in a Hamiltonian
formulation of general relativity were frustrated by a recognition
that no possible canonical transformations of the field variables
could mirror four-dimensional coordinate transformations and their
commutators, not even at the infinitesimal level. That is because
(infinitesimal or finite) canonical transformations deal with the
dynamical variables on a three-dimensional hypersurface, a Cauchy
surface, and the commutator of two such infinitesimal
transformations must be an infinitesimal transformation of the
same kind.”
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From infinitesimal to finite canonical symmetry transformations

The problem reflected in the Rosenfeld-Noether generator

In working out the variations generated by the Rosenfeld-Noether
charge one most make explicit use of the Hamiltonian equations of
motion and replace the arbitrary functions λ by corresponding field
derivatives. But there is no canonical means of updating these
assignments for subsequent infinitesimal transformations.
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From infinitesimal to finite canonical symmetry transformations

Dirac’s breakthrough and the Bergmann Komar group

Although Dirac never concerned himself with the question whether
the full diffeomorphism group could be realized as a canonical
transformation group, he is the one who in 1958 unintentionally
invented the framework in which this goal could be achieved. The
key was the decomposition of infinitesimal coordinate
transformations which were either tangent to a given foliation of
spacetime into fixed time slices, or perpendicular to the foliation.

In 1972 Bergmann and Komar subsequently gave a
group-theoretical interpretation of this decomposition, pointing out
that the relevant group was a phase space transformation group
that possessed a compulsory dependence on the spacetime metric.
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The Legendre projectability requirement

We have an mathematical justification for the Dirac decomposition.
It is required in order that configuration-velocity variations be
projectable under the Legendre transformation to phase space.
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The generator of infinitesimal transformations

Confining our attention to general coordinate transformations the
Noether generator density is

Gε(t) = Pµε̇
µ + (Hµ +

∫
d3x ′

∫
d3x ′′Nρ′C ν

′′
µρ′Pν′′)ε

µ.

where {
Hµ(x),Hρ(x ′)

}
= C ν

′′
µρ′ [gab]Hν′′
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Comparison with the Rosenfeld-Noether generator

In every example we have checked, this generator agrees with the
Rosenfeld-Noether with the simple replacement εµ = nµξ0 + δµa ξ

a.
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Time evolution versus diffeomorphisms

The evolution in time is generated by

H =

∫
d3x (NH0 + NaHa + λµP

µ) .

The finite diffeomorphism generator exp
(
s
∫
d3x Gε(t)

)
transforms

solutions into new solutions.
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From infinitesimal to finite canonical symmetry transformations

Enlargement of phase space

Note that the lapse function N and shift Na must be retained as
canonical variables.

Note also that contrary to popular belief, the Hamiltonian
formulation does not fix a time foliation. New foliations result in
new multipliers λµ and new Hamiltonians as a consequence of the
time dependence of the Hamiltonian.
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7. IMPLICATIONS FOR CANONICAL QUANTUM GRAVITY
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Implications for canonical quantization of gravity

Diffeomorphism invariants constructed with finite group
elements

Now that we have the full diffeomorphism group at our disposal,
we can employ it to establish correlations between partial variables.
One possible implementation, in principle, is to locate temporal
and spatial landmarks by referring to curvature even in the vacuum
case. There are of course many more possibilities when matter is
present. We will employ these landmarks as “intrinsic”
coordinates. Such coordinates must be formed from spacetime
scalars. Thus we choose Xµ[gab, p

ab].

In the vacuum case we propose the use of the four Weyl curvature
scalars, as originally suggested by Komar in the 1950’s. They are
quadratic and cubic in the Weyl tensor. Bergmann and Komar
showed in 1960 that they are expressible solely in terms of the
three metric and its conjugate momenta.
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Implications for canonical quantization of gravity

Intrinsic coordinate gauge conditions

We choose intrinsic coordinates through the gauge conditions
xµ = Xµ[gab, p

ab]. Given any solution trajectory in phase space we
can then determine the phase space dependent finite descriptors
εµ[gab, p

ab] := εµ[y ] that will gauge transform these solutions to
those that satisfy the gauge conditions.
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Implications for canonical quantization of gravity

The explicit construction of evolving constants of the
motion

This construction yields Taylor expansions in the coordinates xµ -
now themselves diffeomorphism invariants. The coefficients in the
Taylor expansions are functionals of gab and pab that are explicitly
diffeomorphism invariants. This applies also to the invariant lapse
and shift.

Iφ =
∞∑

nµ=0

1

n0! n1! n2! n3!
(x0)n0(x1)n1(x2)n2(x3)n3 Cn0,n1,n2,n3 [gab, p

ab]
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Implications for canonical quantization of gravity
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