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Focus of this talk:

The use of the four-dimensional diffeomorphism group to
construct evolutions with respect to temporal and spatial
landmarks

Questions to be addressed:

Why were early successes in the Hamiltonian realization of
general covariance symmetry abandoned?

Why and how has the Dirac non-covariant approach
dominated canonical approaches to quantum gravity?

How can the fully relational approach be applied to loop
quantum gravity?
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2. BRIEF HISTORY OF EARLY HAMILTONIAN GENERAL
COVARIANCE



Intrinsic GR

Brief history of early Hamiltonian realizations of general covariance

Rosenfeld’s 1930 tetrad gravitational Lagrangian

“Zur Quantelung der Wellenfelder”, Annalen der Physik 397, 113
(1930)
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Rosenfeld’s 1930 tetrad Hamiltonian density

H = H0

[
gab, p

ab,Aa, p
a, ψ, ψ†

]
+ λIF I + λIJF [IJ] + λF

where F I , F [IJ] and F are primary constraints and λI , λIJ and λ
are arbitrary spacetime functions.
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Felix Klein, Emmy Noether and Wolfgang Pauli

Felix Klein was the first to systematically deduce identities that
followed from the fundamental identity expressing the
transformation properties of a Lagrangian under local symmetries

Nachrichten von der Königl. Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse, 2, 171 - 189, 1918

Emmy Noether’s second theorem was essentially the derivation of
the contracted Bianchi identities

Nachrichten von der Königl. Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse, 2, 235 - 257
(1918).
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Felix Klein, Emmy Noether and Wolfgang Pauli

Felix Klein launched the Encyclopedia of Mathematical Science,
invited Wolfgang Pauli to write his 1921 relativity review
contribution, and critically reviewed Pauli’s drafts.

It is likely that Pauli brought Klein’s algorithm to Rosenfeld’s
attention. It became the basis of Rosenfeld’s derivation of phase
space generators of infinitesimal symmetry transformations.
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Rosenfeld’s infinitesimal phase space symmetry generator

Rosenfeld proved that the vanishing Noether charge generated the
correct variations of all of the phase space variables under all of
the local symmetries. Most importantly for us is that the active
variations under the infinitesimal coordinate transformations
x ′µ = xµ + ξµ(x) are correct.

His conserved and vanishing generating density is

−F I e0I ξ̇
0−F I eaI ξ̇

a−FA0ξ̇
0−paI eνI ξ

ν
,a−paAνξ

ν
,a−HA0ξ

0−Gaξa

−F ξ̇ + paξ,a + i
e
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pψψξ − i
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~c
pψ†ψ†ξ + F[IJ]ξ

IJ = 0
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Peter Bergmann and Paul Dirac

We leap two decades forward to the contributions to constrained
Hamiltonian dynamics of Peter Bergmann and Paul Dirac -
beginning in 1949.

Dirac never concerned himself with the phase space realization of
the full general covariance group. See his Vancouver lectures,
Canadian Journal of Mathematics, 2, 129 - 148 (1950) and 3, 1 -
23 (1951)

Bergmann (1949), with Jim Anderson (1951) and numerous
collaborators did concern themselves with this symmetry. In
particular a joint publication with Ralph Schiller explicitly
employed the vanishing Noether charge.

Bergmann and Schiller, Physical Review 89, 4 - 16, (1953)
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Non-realizability of the diffeomorphism Lie algebra

But there is an obstacle to the realization of finite
diffeomorphisms, explicitly recognized by Bergmann. One can see
this in the Lie algebra

ξµ3 = ξµ1,νξ
ν
2 − ξ

µ
2,νξ

ν
1 = ξµ1,0ξ

0
2 − ξ

µ
2,0ξ

0
1 + . . .

Repeated commutators lead to higher and higher order time
derivatives.
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Dirac’s resolution

Dirac’s solution was probably inspired by his student Paul Weiss:
write the infinitesimal variations as a sum of perpendicular and
tangent increments,

ξµ = nµε0 + δµa ε
a

This results in the familiar metric dependent Dirac algebra.
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The Bergmann - Komar group

Bergmann and Komar interpreted this algebra as representing a
compulsory metric-dependent transformation group

International Journal of Theoretical Physics, 5, 15 - 28, (1972)
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3. LEGENDRE PROJECTABILITY AND THE INDUCED
DIFFEOMORPHISM TRANSFORMATION GROUP
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The Legendre projectability requirement

We have an mathematical justification for the Dirac decomposition.
It is required in order that configuration-velocity variations be
projectable under the Legendre transformation to phase space.
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The generator of infinitesimal transformations

Confining our attention to general coordinate transformations the
Noether generator density is

Gε(t) = Pµε̇
µ + (Hµ +

∫
d3x ′

∫
d3x ′′Nρ′C ν

′′
µρ′Pν′′)ε

µ.

where {
Hµ(x),Hρ(x ′)

}
= C ν

′′
µρ′ [gab]Hν′′
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Time evolution versus diffeomorphisms

The evolution in time is generated by

H =

∫
d3x (NH0 + NaHa + λµP

µ) .

The finite diffeomorphism generator exp
(
s
∫
d3x Gε(t)

)
transforms

solutions into new solutions.
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Enlargement of phase space

Note that the lapse function N and shift Na must be retained as
canonical variables.

Note also that contrary to popular belief, the Hamiltonian
formulation does not fix a time foliation. New foliations result in
new multipliers λµ and new Hamiltonians as a consequence of the
time dependence of the Hamiltonian.



Intrinsic GR

Classical intrinsic dynamics

4. CLASSICAL INTRINSIC DYNAMICS AND NATURAL
WHEELER DEWITT EQUATIONS
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The implementation of Carlo’s partial variable program

Now that we have the full diffeomorphism group at our disposal,
we can employ it to establish correlations between partial variables.
One possible implementation, in principle, is to locate temporal
and spatial landmarks by referring to curvature even in the vacuum
case. There are of course many more possibilities when matter is
present. We will employ these landmarks as “intrinsic”
coordinates. Such coordinates must be formed from spacetime
scalars. Thus we choose Xµ[gab, p

ab].

In the vacuum case we propose the use of the four Weyl curvature
scalars, as originally suggested by Komar in the 1950’s. They are
quadratic and cubic in the Weyl tensor. Bergmann and Komar
showed in 1960 that they are expressible solely in terms of the
three metric and its conjugate momenta.
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Intrinsic coordinate gauge conditions

We choose intrinsic coordinates through the gauge conditions
xµ = Xµ[gab, p

ab]. Given any solution trajectory in phase space we
can then determine the phase space dependent finite descriptors
εµ[gab, p

ab] := εµ[y ] that will gauge transform these solutions to
those that satisfy the gauge conditions.
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The explicit construction of evolving constants of the
motion

This construction yields Taylor expansions in the coordinates xµ -
now themselves diffeomorphism invariants. The coefficients in the
Taylor expansions are functionals of gab and pab that are explicitly
diffeomorphism invariants. This applies also to the invariant lapse
and shift.

Iφ =
∞∑

nµ=0

1

n0! n1! n2! n3!
(x0)n0(x1)n1(x2)n2(x3)n3 Cn0,n1,n2,n3 [gab, p

ab]
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Kuchar-inspired canonical transformations

Canonical transformations can be carried out to new canonical
variables including Xµ and canonical conjugates πµ - but without
imposing gauge conditions. The theory in terms of these new
variables is still fully diffeomorphism covariant - with corresponding
Hamiltonian constraints. Each choice yields a new form for the
constraints and a new Wheeler-DeWitt equation with a
corresponding “natural” choice of temporal and spatial partial
variables.

This “natural” choice is the one that results through the solutions
of the Wheeler-DeWitt equation.
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Fully relative general relativity

Claim: The range of intrinsic coordinates is coincident with the set
of coordinates obtained under arbitrary coordinates transformations

Corollary: For every choice of coordinate chart there is a
corresponding choice of intrinsic coordinates.
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5. IMPLICATIONS FOR LOOP QUANTUM GRAVITY?
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Intrinsic coordinates for loop quantum gravity?

My suspicion is that a “natural” choice of intrinsic coordinates
appears in the construction of the spin network kinematical
framework, scalar constraint Hamiltonian regularization schemes,
and in the Yγ map in the covariant approach.



Intrinsic GR

Implications for loop quantum gravity?

References I


	Introduction
	Brief history of early Hamiltonian realizations of general covariance
	Legendre projectability and the induced diffeomorphism transformation group
	Classical intrinsic dynamics
	Implications for loop quantum gravity?

