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1 - Motivation

e Desire to realize 4-D diffeomorphism
symmetry 1in canonical approach to quantum
gravity

e Lapse and shift should be quantum
operators subject to quantum fluctuations

e We all know intuitively that “frozen time”
1S nonsense!
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2 - Legendre projectability of
diffeomorphism symmetries

* All generally covariant models have singular Lagrangians
J°L | _
dq'ag/

e Configuration-velocity functions which vary in direction of
null directions are not projectable to phase space

det 0

2
if % h v/ =0, then for f(g,g) to be projectable
aq'0q’
it must satisfy y’ & =0
aq’
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Proof - we mean by “projectable” that f 1s the pullback of a
function F(q,p) on phase space:

i @9 _Fq.paq) ; J°L

-=()
i’ b 0
Relativistic free particle example
(0)
1 ’L ’ L JL
hu|wwlmﬂvk 0|=0 since %|m L

2N 2 aq dq 0 aq oN
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e Consider variations of metric under infinitesimal coordinate
transformations

\ GosﬁﬁsmmBoaoaémém
xt=x"-e"(x) .
\ of lapse and shift
o (04 (04
08,y = 8uv.u€ + 8uv€p+ 8uaby

where .
shift

\

-N’+g N°N* g N°
Euw = .
’ %qu %Qw
Not Projectable

N

f'=1—¢(1), S0 88y = 8uoof +280s¢ = ON = Ne + Né

7/7/03 ST ote e 7



e Resolution: infinitesimal coordinate transformations must
depend 1n a unique, precise way on the lapse and shift

e (x) = 0,5" (x) + n" (X)&"(x)
where
n'=(N",-N"'N%)

1s the normal to the constant time hypersurface

_ 1 S d . .
f'=t-N"'E= 6N =NN m+2MA2 £)=¢
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3 - Symmetry Generators and Hamiltonian

Primary constraints
|

&

GlEl= [dx Amﬁ v (K, + [[d'y %wa@%@zg@ﬁSVV

H.H}, = [dz Cl(xy.0H, ()

\ Momentum conjugate to N
1

GIEI=EM+E_(p” +1)
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Hamiltonian

Functions of dynamical canonical variables

N

H= [ d’x(N"H, + AP,

\

Arbitrary functions of coordinates

Free particle example:

RHWA N+HV+>E
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4 - Finite Time Evolution and Symmetry
Transformations

Finite time evolution operator:

\ Time ordering
U(1,0) = Texp| [ dr'{ EQ_vi
0

=1+ s dt{ JH(t)},, + [ dt [ dngd H()}, H(t)},, +-

Free particle example: I

N(t) = %992 =N+ w&}mv x“(t) = %?ovi =x" + %&_23%:
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Finite symmetry operator

S(s) =exp(s{ .GIEl},, )

Parameter s labels one-parameter family of gauge transformed
solutions associated with the finite group descriptors &

Note: could put s dependence in § to simplify coordinate
transformations

Free particle example: I

N (1) = S(s)N(t) = N(z) + sE(1)
x (1) = S()x" (1) = x" (1) + sE(1) p*
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S - Gauge Fixing and Intrinsic
Coordinates

e (Claim: at least one gauge condition must be time-
dependent

e Suggestion (dictated by necessity!): let physical fields fix
the coordinates

e This was program proposed first by Einstein in reconciling
himself with general covariance

* See extensive analyses by John Stachel on Einstein’s
“hole argument”

e Komar and Bergmann proposed using Weyl scalars as
intrinsic coordinates
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Intrinsic coordinates

e [f prescription to go to intrinsic coordinates 1s unique, all
observers will agree on all values of geometric objects
when they transform to this coordinate system

e These values are equivalently those obtained through the
imposition of a gauge condition

* Indeed, the setting of coordinates equal to some function of
the dynamical variables are gauge conditions

Free particle example: set  t=f T(x(t)) then

T(F) = x“(1(7)) = x“ + WA F(D)-x")
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f=f(x"(1)

X(1) = x°(1(F) = x* + WQS - x°)

_ _oodt 1 df(D)
N =N 4z = p’ di

All observers agree on the form of these solution, regardless
of the particular coordinates ¢ with which they start
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6 - Observables - Diffeomorphism Invariants

* We define an observable to be any dynamical quantity whose
value 1s independent of the arbitrary choice of coordinates

* Observables are therefore defined to be functions of dynamical
variables which are invariant under a change in coordinates

* The count of independent variables in invariant functions is
just the number of degrees of freedom of the system

" In GR this number is four per spatial location

= for the free particle the number is six
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Construction of invariants

We construct invariant phase space functions of the dynamical
variables by gauge transforming solutions which do not satisfy
the gauge condition to solutions which do

This fixes the symmetry group descriptor as the appropriate
function of the original solution variables

Free particle example:

£(0) = x°(0) 4 ELX1(0)p" = ELxI(1) = %QS 0

1 df (1)

X ()= i:JIQS (1) Naa) =N+ ExI0 = 5=
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Demonstration of time-dependent invariants

Continuing with the free particle example, |x°(f) = 1)
1s Invariant by construction. And it 1s time-dependent!

OK, you’re not convinced. Fortunately, since we are now able
to implement a canonical symmetry transformation we can
check explicitly!

The non-vanishing infinitesimal variations generated by G[n/(t) are
ox" =n(r)p"

Observe that f(t) doesn’t depend on the phase space coordinates
and 1s therefore trivially invariant!
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1 df ()
p’ dt

Note that | Ng,(2) = is invariant by the same

by the same argument

Still not convinced?

Expressing our invariant functions from the last slide in
terms of the phase space arguments we have

x¢ () = x 3+w|©§ X SV X +w|¢3 i

SO

Sxl (1) = 6x* - W@% -
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7 - What about quantum gravity?

* There are practical difficulties in finding a generically
monotonically increasing function of Weyl scalars for
intrinsic clock, even just in a patch. Perhaps material fields
could be used - or are required?

e Quantum time evolution can be given a sensible meaning
* Improved Wheeler-DeWitt formalism?
* Improved Hamilton-Jacobi approach?

e Want formalism in which lapse and shift are retained as
quantum operators

= Could attempt to solve constraints and gauge fixing

= Group average over diffeomorphisms?
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In praise of lapse and shift

* Retention of lapse and shift with full symmetry group
means that 1f group can be implemented in quantum theory,
conventional objection to canonical program that one 1s
committed to a fixed foliation of spacetime 1s wrong!

e Full spacetime metric will be subject to quantum
fluctuation

e Tools are available in connection approaches to construct
surface measures with timelike components when timelike
component of connection 1s retained (as it must be to
implement symmetry group)
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Quantum lapse of relativistic free particle

The lapse in our our free particle model is readily promoted to an
operator with a well-defined physical meaning - the proper time
of the particle 1s subject to quantum fluctuation!

It 1s assumed that Minkowski observers have rate adjusted their
clocks, as instructed, with the intrinsic time choice x/(t) =f{t)

The proper time elapse between ¢, and #,1s

av= [ar D M - (f)-f@)

So the smaller the uncertainty in particle spatial momentum (and
energy) , the larger the uncertainty in the proper time!
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& - Conclusions

Canonical general relativity 1s covariant under symmetry
transformations which are induced by the full four-
dimensional diffeomorphism group

Misunderstandings of the nature of this group have led to
the mistaken conclusion that diffeomorphism invariants
must be constant in time

Similar misconceptions have led to the mistaken
conclusion that the choice of a spacetime foliation leaves
only the spatial diffeomorphism group as the remaining
symmetry group

There 1s good physical rationale for retaining the lapse and
shift as classical and quantum variables. Indeed, they must
be retained to exploit the full symmetry of general
relativity
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