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1 - M
otivation

•
D

esire to realize 4-D
 diffeom

orphism
sym

m
etry in canonical approach to quantum

gravity
•

Lapse and shift should be quantum
operators subject to quantum

 fluctuations
•

W
e all know

 intuitively that “frozen tim
e”

is nonsense!
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om
ar-
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ulation
of general relativity,” Phys. R

ev. D
62 , 064026 (2000) (w

ith J.M
. Pons

and L
.C

. Shepley)

•
“T

he gauge group in the real triad form
ulation of general relativity,”

G
en. R

el. G
rav. 32, 1727  (2000) (w

ith J.M
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ations in E
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ang-M
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. Shepley)
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2 - Legendre projectability of
diffeom

orphism
 sym

m
etries

• A
ll generally covariant m

odels have singular Lagrangians

†
 

det
∂

2L
∂ ˙ q i∂ ˙ q j

Ê Ë Á 
ˆ ¯ ˜ =

0

• Configuration-velocity functions w
hich vary in direction of

null directions are not projectable to phase space

†
 

if 
∂

2L
∂ ˙ q i∂ ˙ q j g

j=
0, then for f(q, ˙ q ) to be projectable

it m
ust satisfy g

j
∂f
∂ ˙ q j

=
0
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Proof - w
e m

ean by “projectable” that f is the pullback of a
function F(q,p) on phase space:

†
 

g
j ∂f(q, ˙ q )

∂ ˙ q j
=

∂F
(q,p(q, ˙ q ))

∂p
k

g
j

∂
2L

∂ ˙ q k∂ ˙ q j
=

0

Relativistic free particle exam
ple

†
 

L
=

12N
˙ x 2-

N2
fi

∂
2L

∂ ˙ q ∂ ˙ q 

00001 Ê Ë Á Á Á Á Á Á ˆ ¯ ˜ ˜ ˜ ˜ ˜ ˜ =
0 since ∂L∂ ˙ q 5  ≡

∂L∂
˙ N =

0

So projectable functions cannot depend on

†
 

˙ N 
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•  Consider variations of m
etric under infinitesim

al coordinate
transform

ations

†
 

¢ 
x m

=
x

m
-

e
m(x)

dg
m

n
=

g
m

n
,a e

a
+

g
a

n e
,m a

+
g

m
a e

,n a

w
here

†
 

g
m

n
=

-N
2+

g
cd N

cN
d

g
ac N

c

g
bc N

c
g

ab

Ê Ë Á 
ˆ ¯ ˜ 

lapse
shift

Contains tim
e derivatives

of lapse and shift

Free particle exam
ple

†
 

t'=
t-

e(t), so dg
00

=
g

00,0 e
+

2g
00 ˙ e fi

dN
=

˙ N e
+

N
˙ e 

N
ot Projectable
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•  Resolution: infinitesim
al coordinate transform

ations m
ust

depend in a unique, precise w
ay on the lapse and shift

†
 

e
m(x)=

d
a mx

a(x)+
n

m(x)x
0(x)

w
here†

 

n
m

=
(N

-1,-N
-1N

a)

is the norm
al to the constant tim

e hypersurface

Free particle exam
ple:

†
 

t'=
t-

N
-1x

fi
dN

=
˙ N N

-1x
+

N
ddt

N
-1x

(
) =

˙ x 
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3 - Sym
m

etry G
enerators and H

am
iltonian

  

†
 

G
[x]=

d
3x 

˙ x mP
m

+
x

m
H

m
+

d
3y d

3zC
ma b

(x,y,z)N
a(y)P

b (z)
ÚÚ

(
)

(
)

Ú

  

†
 

H
m (x),H

n (y)}
{

PB
=

d
3z 

Ú
C

m
n b
(x,y,z)H

b (z)

Prim
ary constraints

Secondary constraints

G
roup structure functions:

Free particle exam
ple:

†
 

G
[x]=

˙ x P
+

x
12

p
2+1

(
) M
om

entum
 conjugate to N
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H
am

iltonian

  

†
 

H
=

d
3x

N
mH

m
+

l
mP

m
(

)
Ú

Functions of dynam
ical canonical variables

A
rbitrary functions of coordinates

Free particle exam
ple:

†
 

H
=

N2
p

2+1
(

) +
lP
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4 - Finite Tim
e Evolution and Sym

m
etry

Transform
ations

Finite tim
e evolution operator:

  

†
 

ˆ U (t,0)=
T

exp
d0 tÚ
t'{  ,H

(t')}
PB

Ê Ë Á 
ˆ ¯ ˜ 

  

†
 

=1
+

d0 tÚ
t1 {  ,H

(t1 )}
PB

+
dt

0 t
Ú

1
dt2

0 t1
Ú

{{  ,H
(t1 )}

PB ,H
(t2 )}

PB
+

L

Free particle exam
ple:†

 

H
(t1 )=

N
(t1 )
2

p
2+1

(
) +

l(t1 )P

†
 

N
(t)=

ˆ U (t,0)N
=

N
+

d0 tÚ
t1 l(t1 )

†
 

x
m(t)=

ˆ U (t,0)x
m

=
x

m
+

d0 tÚ
t1 N

(t1 )p
m

Tim
e ordering
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Finite sym
m

etry operator

†
 

ˆ S (s)=
exp

s{  ,G
[x]}

PB
(

)
Param

eter s labels one-param
eter fam

ily of gauge transform
ed

solutions associated w
ith the finite group descriptors x

Free particle exam
ple:†

 

G
[x](t)=

x(t)
2

p
2+1

(
) +

˙ x (t)P

†
 

N
s (t)=

ˆ S (s)N
(t)=

N
(t)+

s ˙ x (t)

†
 

x
s m(t)=

ˆ S (s)x
m(t)=

x
m(t)+

sx(t)p
m

N
ote: could put s dependence in x  to sim

plify coordinate
transform

ations
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5 - G
auge Fixing and Intrinsic

Coordinates
•

Claim
: at least one gauge condition m

ust be tim
e-

dependent
•

 Suggestion (dictated by necessity!): let physical fields fix
the coordinates

•
This w

as program
 proposed first by Einstein in reconciling

him
self w

ith general covariance
•

See extensive analyses by John Stachel on Einstein’s
“hole argum

ent”
•

 K
om

ar and Bergm
ann proposed using W

eyl scalars as
intrinsic coordinates
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Intrinsic coordinates
•

If prescription to go to intrinsic coordinates is unique, all
observers w

ill agree on all values of geom
etric objects

w
hen they transform

 to this coordinate system
•

These values are equivalently those obtained through the
im

position of a gauge condition
•

Indeed, the setting of coordinates equal to som
e function of

the dynam
ical variables are gauge conditions

Free particle exam
ple:

set

†
 

t =
f

-1(x
0(t))

then

†
 

x a(t )=
x

a(t(t ))=
x

a
+

p
a

p
0

f(t )-
x

0
(

)
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Free particle exam
ple:

set

†
 

t =
f

-1(x
0(t))

then

†
 

x a(t )=
x

a(t(t ))=
x

a
+

p
a

p
0

f(t )-
x

0
(

)
and

†
 

N (t )=
N

(t) dtdt =
1p

0 df(t )
dt 

A
ll observers agree on the form

 of these solution, regardless
of the particular coordinates t  w

ith w
hich they start
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6 - O
bservables - D

iffeom
orphism

 Invariants

• W
e define an observable to be any dynam

ical quantity w
hose

value is independent of the arbitrary choice of coordinates

• O
bservables are therefore defined to be functions of dynam

ical
variables w

hich are invariant under a change in coordinates

• The count of independent variables in invariant functions is
just the num

ber of degrees of freedom
 of the system

ß In G
R this num

ber is four per spatial location

ß for the free particle the num
ber is six
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Construction of invariants

W
e construct invariant phase space functions of the dynam

ical
variables by gauge transform

ing solutions w
hich do not satisfy

the gauge condition to solutions w
hich do

This fixes the sym
m

etry group descriptor as the appropriate
function of the original  solution variables

Free particle exam
ple:

†
 

x
x

[x]
a

(t)=
x

a(t)+
p

a

p
0

f(t)-
x

0(t)
(

)
†

 

f(t)=
x

0(t)+
x[x](t)p

0
fi

x[x](t)=
1p

0
f(t)-

x
0(t)

(
)

†
 

N
x

[x] (t)=
N

(t)+
˙ x [x](t)=

1p
0 df(t)

dt
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D
em

onstration of tim
e-dependent invariants

Continuing w
ith the free particle exam

ple,

†
 

x
0(t)=

f(t)
is invariant by construction. A

nd it is tim
e-dependent!

O
K

, you’re not convinced. Fortunately, since w
e are now

 able
to im

plem
ent a canonical sym

m
etry transform

ation w
e can

check explicitly!

The non-vanishing infinitesim
al variations generated by G

[h](t)  are

†
 

dx
m

=
h(t)p

m

O
bserve that f(t) doesn’t depend on the phase space coordinates

and is therefore trivially invariant!
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†
 

dx
x

[x]
a

(t)=
dx

a
-

p
a

p
0 dx

0
=

0

N
ote that

†
 

N
x

[x] (t)=
1p

0 df(t)
dt

is invariant by the sam
e

by the sam
e argum

ent

Still not convinced?

Expressing our invariant functions from
 the last slide in

term
s of the phase space argum

ents w
e have

†
 

x
x

[x]
a

(t)=
x

a(t)+
p

a

p
0

f(t)-
x

0(t)
(

) =
x

a
+

p
a

p
0

f(t)-
x

0
(

)
so
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7 - W
hat about quantum

 gravity?
•

There are practical difficulties in finding a generically
m

onotonically increasing function of W
eyl scalars for

intrinsic clock, even just in a patch. Perhaps m
aterial fields

could be used - or are required?
•

Q
uantum

 tim
e evolution can be given a sensible m

eaning
ß

Im
proved W

heeler-D
eW

itt form
alism

?
ß

Im
proved H

am
ilton-Jacobi approach?

•
W

ant form
alism

 in w
hich lapse and shift are retained as

quantum
 operators

ß
Could attem

pt to solve constraints and gauge fixing
ß

G
roup average over diffeom

orphism
s?
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In praise of lapse and shift
•

Retention of lapse and shift w
ith full sym

m
etry group

m
eans that if group can be im

plem
ented in quantum

 theory,
conventional objection to canonical program

 that one is
com

m
itted to a fixed foliation of spacetim

e is w
rong!

•
Full spacetim

e m
etric w

ill be subject to quantum
fluctuation

•
Tools are available in connection approaches to construct
surface m

easures w
ith tim

elike com
ponents w

hen tim
elike

com
ponent of connection is retained (as it m

ust be to
im

plem
ent sym

m
etry group)
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Q
uantum

 lapse of relativistic free particle
The lapse in our our free particle m

odel is readily prom
oted to an

operator w
ith a w

ell-defined physical m
eaning - the proper tim

e
of the particle is subject to quantum

 fluctuation!

It is assum
ed that M

inkow
ski observers have rate adjusted their

clocks, as instructed, w
ith the intrinsic tim

e choice x 0(t) =f(t)

The proper tim
e elapse betw

een ti  and tf  is

  

†
 

D
t

=
dt df(t)

dt
ti tfÚ

1ˆ p 0
=

f(t
f )-

f(ti )
(

)
1r ˆ p 2+1

So the sm
aller the uncertainty in particle spatial m

om
entum

 (and
energy) , the larger the uncertainty in the proper tim

e!
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8 - Conclusions
•

Canonical general relativity is covariant under sym
m

etry
transform

ations w
hich are induced by the full four-

dim
ensional diffeom

orphism
 group

•
M

isunderstandings of the nature of this group have  led to
the m

istaken conclusion that diffeom
orphism

 invariants
m

ust be constant in tim
e

•
Sim

ilar m
isconceptions have led to the m

istaken
conclusion that the choice of a spacetim

e foliation leaves
only the spatial diffeom

orphism
 group as the rem

aining
sym

m
etry group

•
There is good physical rationale for retaining the lapse and
shift as classical and quantum

 variables. Indeed, they m
ust

be retained to exploit the full sym
m

etry of general
relativity


